REGION IV STREAM FISHERY DATA COLLECTION REPORT 1986 - 1987

Prepared by Rick D. Bivens

TENNESSEE WILDLIFE RESOURCES AGENCY
JULY, 1988

TABLE OF CONTENTS

Pa	age
INTRODUCTION	1
METHODS	3
STREAM ACCOUNTS	7
North Fork Bullrun Creek	8 24 32 36 49 57
Gap Creek	69 83 90 97 04
Cane Creek	16 37 45
Nolichucky River	52 64 81 95
Flat Creek	134 410 563 790 17

INTRODUCTION

Tennessee's rivers and streams are valuable resources. Its freshwater fish fauna is the most diverse in the United States with approximately 290 species of native fish occurring within the state. This number is greater than that found in any other state and the majority of these occur in our larger rivers and streams. For example, the Duck and Clinch are two of the most speciose rivers in North America (Starnes and Etnier 1980).

As well as offering a variety of recreational opportunities, streams and rivers across the state are also sources of both commercial and domestic water. The management and protection of this important resource has been identified as a major role of the Tennessee Wildlife Resources Agency (TWRA).

This is the first annual report on stream fishery data collection in Region IV. The purpose of this project has been to collect baseline data on fish and macroinvertebrate communities of streams in the region. With the recent implementation of the Tennessee Aquatic Data Base System (TADS), an additional purpose has been to expand and update information to aid in resource management.

Region IV has 4,847 miles of streams that total approximately 14,111 acres. There are approximately 800 miles that are classified as coldwater streams (TWRA 1986). Except for a few streams in Anderson, Campbell, and Claiborne counties

that drain into the Cumberland River system, all the streams in Region IV are in the Tennessee River drainage. The main river systems in the region are the Clinch, Powell, Little Tennessee, French Broad, and Holston.

The streams included in this report were sampled for various reasons. Some were sampled to evaluate trout stocking that has taken place, or as potential candidates for future stocking, and in two cases the elimination of trout stocking. Some have suffered from pollution for a long time while others have recovered to some extent. Others were sampled for general interest or to obtain baseline data on fish populations and species diversity.

Due to the broad scope and general nature of this project, it was deemed unnecessary to develop a detailed report on individual streams and to compare the information gathered within and among stream reaches. Therefore, the information has been presented in the results section of the report simply as individual stream accounts. These include a general summary of the survey work that took place along with the data collected and a comment section for each stream. Sample site location maps and field data forms are also included in these accounts.

METHODS

The streams to be surveyed and the methods required were outlined in Field Request No. 86-3. In addition to this list, twelve other streams were also surveyed and are included in this report. The survey work was conducted from September 1986 through October 1987. Forty-six fish samples and 87 benthos samples from 28 streams were collected.

Qualitative fishery data were collected using standard electrofishing techniques. Streams were sampled with backpack shockers or various combinations of shockers and seines. In general, small streams were sampled with a single backpack unit while larger streams were sampled with multiple units. Larger rivers were sampled with a boat shocker where deeper water permitted and with a backpack shocker or backpack shocker in combination with a seine on the shallow riffle areas.

Quantitative fishery data were collected using explosives. Primacord with a block net anchored downstream was employed. Dip nets were used to collect all the fish in the sample area. One area on the Tellico River was sampled using 5 backpack shockers operating side by side and making 3 passes for a population estimation using a depletion estimator.

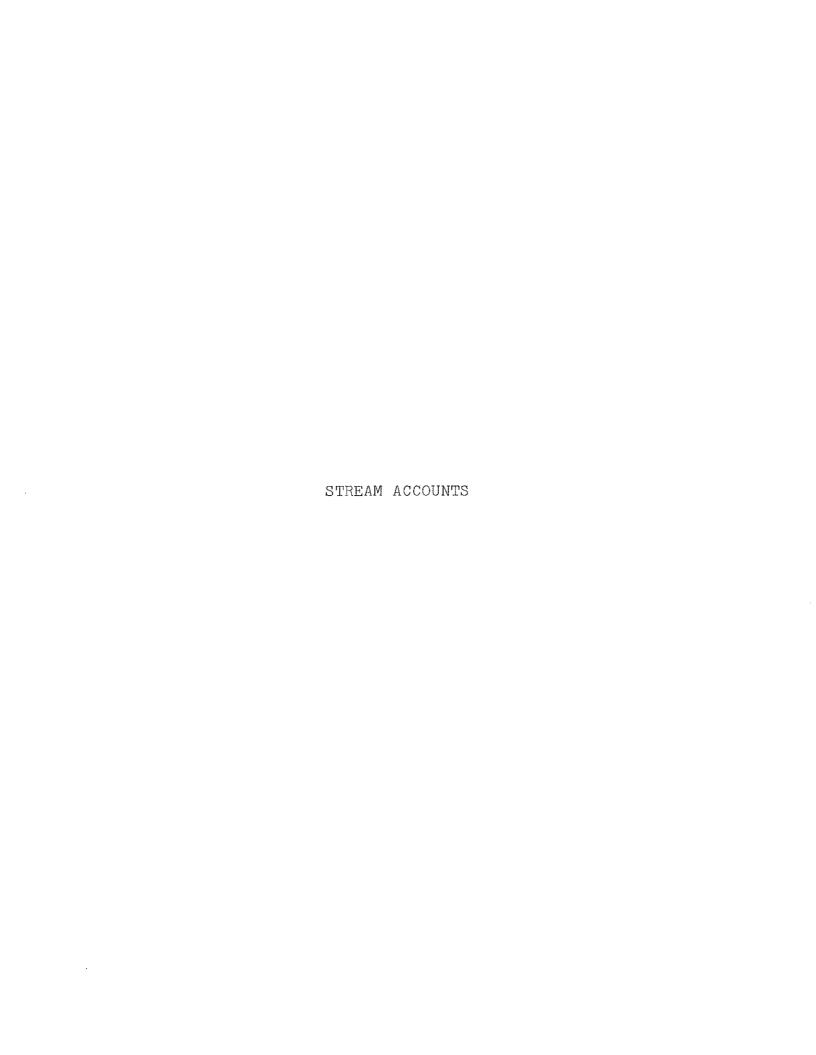
Sample lengths ranged from 200 to 700 feet. Generally, 300 feet was enough on the smaller and medium size streams to include both riffle and pool habitats.

All fish were identified in the field and released when

possible. When field identification was impossible or impractical the fish were preserved in 10% formalin for later determination. Examination and confirmation on identification of problematic specimens was made by Charles F. Saylor, TVA, Dr. David A. Etnier, University of Tennessee, and Dr. Robert Jenkins, Roanoke College. Fish of rare and intrinsic value were also preserved and will eventually be cataloged into the region's fish collection. Some were deposited in The University of Tennessee Research Collection of Fishes. Common and scientific names of fishes used in this report are after Robins et al. (1980).

Game fish were weighed and measured individually. Nongame fish (suckers, catfish, carp, goldfish, and large gizzard shad) and forage fish (minnows, darters, sculpins, and small gizzard shad) were weighed as a group by species and a length range was obtained. All fish data collected was recorded on Fish Field Data Forms and all measurments are reported in English units. The letter "t" is recorded where the weight was represented only by a trace amount (less than 0.01 lb.).

Qualitative and quantitative samples are divided into categories of game fish by species, nongame fish, and forage fish. These are summarized as actual numbers and weight for all fish collected and also as percentages of the total for each group. Calculated standing crop estimates for quantitative samples are reported in number and weight per acre. All the


field data forms are presented along with each summary in the stream accounts.

Quantitative benthos samples were generally collected from two square-foot Surber samples from each fish sample site. They consisted of one sample taken from the middle and one midway between midstream and an edge. Qualitative samples were taken with a D-frame and other aquatic nets. Large particles and debris were picked from the samples and discarded. The remaining sample was preserved in 50% isopropanol and later sorted in the laboratory. Total number of organisms and a volumetric displacement measurement was made for each sample. Attempts were made to identify specimens to species level when reasonably possible. Many were identified to genus and most, at least, to family. Dr. David A. Etnier, University of Tennessee, examined much of the material and either made or confirmed the attempted identifications made by the author. Steve Ahlstedt, TVA, identified almost all of the mollusks collected. Nomenclature of aquatic insects used in this report follows Brigham et al. (1982). Benthos results are reported in table form with each stream account.

Water quality data were taken in conjunction with each fishery and benthos sample. Generally, the sample included dissolved oxygen (DO), temperature, pH, and conductivity. Data were taken from midstream and mid-depth at each site. On most streams data were collected with a 4041 Hydrolab. In other

cases, a YSI DO meter and pocket pH meter were used. Water quality parameters along with habitat data were recorded on Field Physiochemical Data Forms. These forms are included in each stream account.

Sample site locations were delineated on 7.5 minute topographical maps and copies of these have been included in the stream accounts. TADS river reach numbers and quadrangle map coordinates for sample sites are recorded on all data forms.

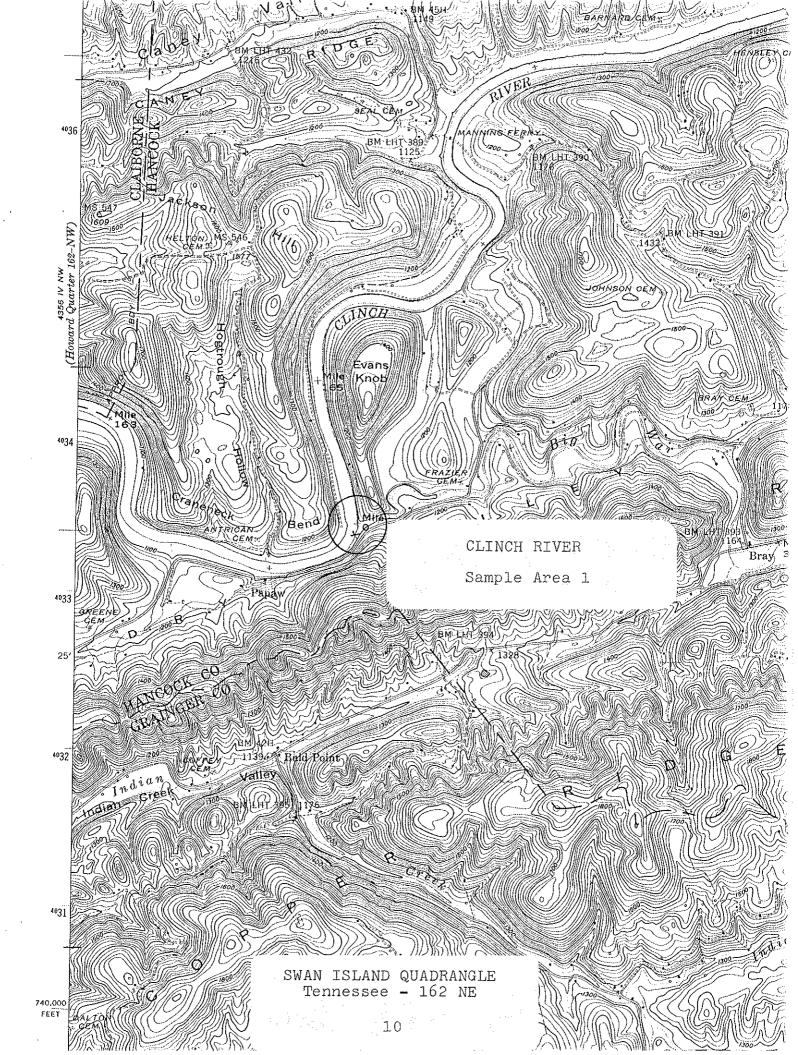
Clinch River

Two qualitative fishery surveys were conducted in October 1986:

- Location and Length Sample area 1 was at the mouth of Big War Creek, Clinch River mi. 164.4, and was sampled on 21 October 1986. The sample area was 400 ft. in length and averaged 251 ft. in width. Sample area 2 was at "The Rounds" downstream of Horton Ford, Clinch River mi. 195.0, and was sampled on 30 October 1986. The sample area was 300 ft. in length and averaged 237.3 ft. in width. Both sites were in Hancock County. Area 1, Swan Island Quadrangle. Area 2, Looneys Gap Quadrangle.
- Gear Type Both sites were sampled using both boat and backpack electrofishing equipment. A shocker boat was used where deeper water permitted and shallow riffle areas were sampled with a backpack shocker.
- Water Quality Data were taken from midstream with a 4041

 Hydrolab. Area 1, on 21 October 1986: DO 11.0 ppm,
 pH 7.9, Temperature 59.5 F, Conductivity 315 micromhos/cm.
 Area 2, on 29 October 1986: DO 11.7 ppm, pH 8.0,
 Temperature 59.0 F, Conductivity 312 micromhos/cm.
- Benthos Collection Benthic organisms were collected from two square-foot Surber samples at each site. Area 1 averaged 84 organisms, 0.1 ml. volumetric displacement, and represented 19 different taxa. Area 2 averaged 27 organisms, 0.5 ml. volumetric displacement, and represented 11 different taxa.

Fish Collected: Area 1 Area 2


								
<u>Species</u>	No.	% by No.	Wt.	% by Wt.	No.	% by No.	Wt.	% by Wt.
Smallmouth bass Spotted bass Rock bass Bluegill Longear sunfish	7 1 15 5	2.3 0.3 4.9	0.8 0.3 2.7	0.7 0.2 2.2	36 5 41 1 45	4.8 0.7 5.4 0.1 6.0	10.65 0.4 6.5 0.1 1.25	10.6 0.4 6.5 0.1 1.2
Nongame Fish Forage Fish	88 191	28.7 62.2	118.05 0.9		102 524		78.9 2.5	78.8 2.5
Total	307		122.9		754	-	100.3	

Comments:

Two areas of the Clinch River were sampled primarily to update fishery data for the agency and collect stream information for TADS. Game fish from both sites included smallmouth bass (Micropterus dolomieui), spotted bass (M. punctulatus), rock bass (Ambloplites rupestris), bluegill (Lepomis macrochirus), and longear sunfish (L. megalotis). Smallmouth bass and rock bass were collected from both sites and based on our samples, it appears that the upper reach supports a better fishery than the lower portion. At the downstream site, rock bass were the primary game fish and made up about 5% by numbers and 2% by weight of all fish collected. Rock bass and smallmouth bass were about 5% by numbers at the upper site, however, smallmouth bass made up about 11% and rock bass about 7% of the total weight of all fish collected. We collected a total of 44 fish species from both sites combined.

The Clinch River has one of the most diverse fish faunas within Tennessee and is one of the most speciose rivers in North America (Starnes and Etnier 1980). Although it has not been severely damaged, portions of the Clinch (especially in Virginia) are polluted by siltation, coal fines, municipal sewage, and toxic spills. The possibility of increased coal mining activities and discharge of wastewater still pose serious threats to several species of threatened and endangered aquatic organisms found in the Clinch River (Hylton 1984).

Benthic macroinvertebrates from our samples included representatives of Caenidae, Heptageniidae, Potamanthidae, and Tricorythidae mayflies, Brachycentridae, Hydropsychidae, Hydroptilidae, and Polycentropodidae caddisflies and elmid riffle beetles. Asian clams (Corbicula fluminea) and river snails (Ancluosa subglobosa, Io fluvialis, and Pleurocera unciale) were also present. A. subglobosa and P. unciale were abundant.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

A.	LOCATION
	Watershea

	Wat	ershead Clinch River	Lat-Long 362528N - 832120W					
	Str	eam Clinch River	Length of Sample 400'					
	Are	ea or Station Site # 1	Reach 06010205-13.0					
	Cou	nty Hancock	Date/Time 21 October 1986/1710					
	Dat	a Collected By Rick D. Bivens, Da	wid Lane, and Chester J. Ellison					
3.	PHY	SICAL CHARACTERISTICS	•					
	1.	Average Width 251' Average I	Depth 2.1 ^t Maximum Depth 6.2 ^t					
٠	2.	Estimated Percent of Stream in Pools	s is50 %.					
	3.	Estimated Percent Pool Bottom is Muc	I <u>10</u> % Silt <u>30</u> % Sand <u>30</u> %					
		Clay _ % Gravel _ % Rubi	ole 20 % Boulders 10 %					
		Bedrock - % Other - %						
	4.	Estimated Percent Riffle Bottom is N	Mud5% Silt20% Sand <u>15</u> %					
		Bedrock 30 % Other Rubble 3	0 % !					
	5.	Abundance of Littoral Aquatic Plants	s is Numerous					
		Average	Scarce X					
	6.	Cover Abundance (overhanging banks,	logs, roots, etc.) is Good in 30 %					
		of Stream, Average in 30	%, Poor in 40 %					
	7.	Shade or Canopy Good over 50	% of Stream; Interferes <u>little</u>					
		(degree) with <u>any</u> (t	type) of fishing.					
	8.	Flow (c.f.s.) 459.6: Flow compare	ed to Normal: Low Normal X High					
	9.		. 59.5°F % Saturation 105					
1	.0.	Present Weather Sunny, clear, a	nd mild.					
1	l.	Past Weather (last 24 hours) Clea	r and mild.					
1	2.	D.O. <u>11.0</u> pH <u>7.9</u> Temp.5 <u>9.5</u> Condu	ectivity_315					
1	3:	Comments: Sample location at th	e mouth of Big War Creek, Clinch					
		River mi. 164.4.						

FISH FIFLD DATA FORM

TENNESSEE WILDLIFE RESOURCES AGENCY								
Watershed Clinch River Lat-Long 362528N - 832120W							.20W	
Body of Wate	r Clinc	h River		Date 2]	Octobe:	r 1986	•	
County or Riv	ver Mile Ha	ncock		Reach 0	6010205	-13.0		
Type of Samp			ng	Pool Eleva	ition -	L050!		
	at shocking ocking on r)' sample l	iffle a	pack reas.	Time 1	400-150	0 1		
Name	SPECIE S	CODE	NUMBER	LENGTE	wr.	Ŕ	*	*
Ambloplites	rupestris	13	4	7	1,0			
TT .	11	7.1	1	9	0.4			
. 11	TT .	tt	1	8	0.35			
T1	Ť I	TT	5	6	0.75	:		
11	11	11	3	5	0.2			
11	11	11	1	1 2	t			
Lepomis meg	alotis	208	2	2	t			
ff	11	11	1	3	t			
T1	tt	11	1	6	0.15			
11	71	11	1	1	t	,		
Micropterus	dolomieui	218	2	9	0.7			

	1					
Micropterus punctul	atus 219	1	8	0.3		:
Hypentelium nigrica	ins 166	8	7-14	5.7	,	:
Dorosoma cepedianum	ı 48	15	11-12	8.3		
Aplodinotus grunnie		16	13-23	39.9		
Lepisosteus osseus	198	2	21-25	1.9		
Ictalurus punctatus	176	1	19	2.1		
11 11	11	2	17	2.9		
!! !!	11	1	16	1.1		
TT II	11	^	1 7 7			

1

2

0.1

t

t

1.75

5.

4

- Laber Ideamount massage	Continued	l on next	page	
Field Notes:				
Name of Collector(s): Rich	x D. Bivens.	David Lan	e. and Cl	nester J. Ellison

14

WR-C525

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Clinch Ri	ver		Lat-Long	262528	и Оэл:			
***************************************			Lat-Long_	302320	N - 032.	TSOM		
Body of Water Clinch	River		Date 21 October 1986					
County or River Mile Ha	ounty or River Mile Hancock Reach 06010205-13.0					······································		
Type of Sampling Election	g Electrofishing			Pool Elevation 1050'				
Gear Type Boat shocking			Time 140	00-1500				
shocking on 1 400' sample l	riffle a length	areas.				***************************************	······································	
SPECIES Name	CODE	NUMBER	LENGTH	WI.	*	*	*	

400' sample length							
SPECIES Name	CODE	number	LENGTH	WI.	*	*	*
Moxostoma carinatum	228	2	17-21	5.0			
Moxostoma duquesnei	229	32	4-17	39.8			
Moxostoma erythrurum	230	2	16-17	3.6			
Moxostoma							
macrolepidotum	231	3	13-17	3.8			
Campostoma anomalum	25	8	2-3	t			
Hybopsis amblops	155	2	2	t			
Hybopsis dissimilis	157	8	4-5	0.15			
Notropis chrysocephalu	s 249	4	2-3	t			
Notropis galacturus	253	2	4-5	0.05			
Notropis leuciodus	255	20	2	0.05			
Notropis photogenis	259	1	4	t			
Notropis rubellus	260	40	2	0.05	I.		
Notropis sp. cf.					······································		
Notropis spectrunculu	s 266	5	2	t	·····		
Notropis spilopterus	269	6	2-4	t			
Notropis telescopus	272	6	2	t			
Notropis volucellus	277	1.5	2	t			
Phenacobius uranops	330	1	3	t			
Etheostoma blennioides	81	4	2-4	t			
Etheostoma camurum	85	12	2-3	0.05			
Etheostoma maculatum	101	3	2-3	t			
Etheostoma rufilineatum		13	2-3	t			
Etheostoma simoterum	111	6	2	t	·····		
Etheostoma zonale	135	14	2-3	0.05	***************************************		

	concin	ued on next	page	
Field Notes:				
		·····		
Name of Collector(s):	Rick D Bivons	David Inno	and Chasten	T 727.5 d

WR-0525

* Label Parameter Listed

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Site #1 - Clinch River mi. 164.4 .

TEMPORE WERE WELL TO THE TEMPORE TO							
Watershed Clinch Riv	ver		Lat-Long	362528	N - 8321	.20W	
Body of Water Clinch	River		Date <u>21</u>	October	1986		
County or River Mile I	Hancock		ReachC	6010205	-13.0		
Type of Sampling Electr							
Gear Type Boat shocking	g & bacl	kpack '	Time <u>140</u>	0-1500			·
shocking on 1 400' sample		areas.					
SPECIES		NUMBER	LENGTE	WT.	1	*	*
Name	CODE						
Percina aurantiaca	304	6	3-6	0.2			
Percina caprodes	306	1.0	4-6	0.3			
Percina evides	310	1.	2	t			
Percina sciera	317	2	2-3	t			-
Cottus carolinae	40	1	2	t			
Noturus eleutherus	283	1	2	t			
		ļ					
							}
			<u> </u>				<u> </u>
							<u> </u>
							<u> </u>
					:		i
							i
			ļ				
			1				
						<u> </u>	
······································						<u> </u>	i
			i				
Label Parameter Listed							
Field Notes:					<u> </u>		

* Label Parameter List	ed			
Field Notes:				
Name of Collector(s):	Rick D. Bivens	, David Lane, and	Chester J.	Ellison

WR-0525

Clinch River: Site # 1, Edge Surber sample

21 October 1986

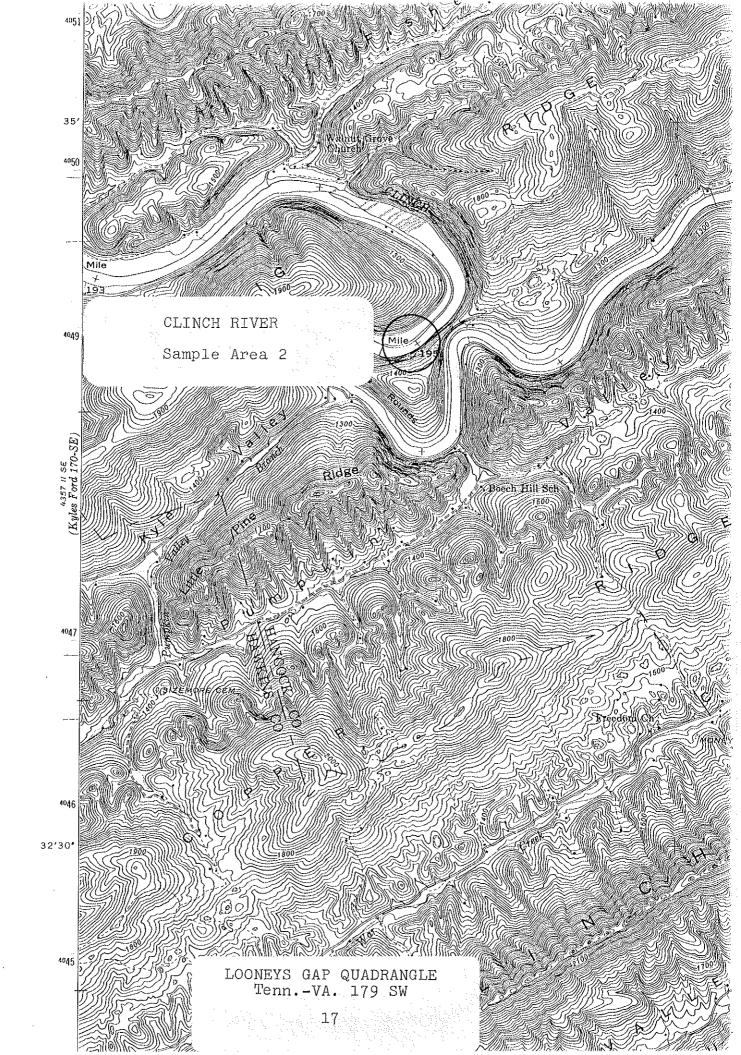
Field # 017

Hancock Co., TN; Mouth of Big War Creek, Clinch River mi. 164.4. Coordinates: 362528N - 832120W. Swan Island, Tenn., # 162 NE Quad. Reach # 06010205-13.0.

TAXA	NUMBER
COLEOPTERA: Elmidae/Stenelmis larva	1
EPHEMEROPTERA: Heptageniidae/Stenonema	1
GASTROPODA: Pleuroceridae/Anculosa subglobosa To fluvialis Pleurocera unciale	41 4 8
ODONATA: Coenagrionidae/Argia	1
PELECYPODA: Corbiculidae/Corbicula fluminea	4
TRICHOPTERA: Hydropsychidae/Hydropsyche Hydroptilidae/Hydroptila Polycentropodidae/Neureclipsis crepuscularis	1 2 2
	65

Volumetric Displacement was 0.15 ml.

Clinch River: Site # 1, Midstream Surber sample


21 October 1986

Field # 017

Hancock Co., TN; Mouth of Big War Creek, Clinch River mi. 164.4. Coordinates: 362528N - 832120W. Swan Island, Tenn., # 162 NE Quad. Reach # 06010205-13.0.

TAXA	NUMBER
COLEOPTERA: Elmidae/Dubiraphia larva	1
DIPTERA: Chironomidae	1
EPHEMEROPTERA: Caenidae/Caenis Heptageniidae/Stenacron Stenonema Potamanthidae/Potamanthus Tricorythidae/Tricorythodes	1 3 2 1 1
GASTROPODA: Pleuroceridae/Anculosa subglobosa Pleurocera unciale	55 25
LEPIDOPTERA: Pyralidae/Petrophila	ı
TRICHOPTERA: Brachycentridae/Brachycentrus case Hydropsychidae/Hydropsyche Hydroptilidae/Hydroptila Hydroptila spatulata pupa	1 4 6 1
	103

Volumetric Displacement was 0.1 ml.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

A. LOCATION

	Wa	tershead Clinch River	Lat-Long 363414N - 825834W
	St	ream Clinch River	Length of Sample 300'
		ea or Station Site # 2	
		untyHancock	
		ta Collected By Rick D. Bivens and	
В.	PHY	YSICAL CHARACTERISTICS	
	1.	Average Width 237.3' Average D	epth 2.7' Maximum Depth 9.1'
·	2.	Estimated Percent of Stream in Pools	
	3.	Estimated Percent Pool Bottom is Mud	10 % Silt 20 % Sand 20 %
		Clay 10 % Gravel 20 % Rubb.	
		Bedrock% Other%	:
	4.	Estimated Percent Riffle Bottom is Mu	ud % Silt5_ % Sand10_ %
		Bedrock 80 % Other Rubble	5%
	5.		is Numerous
			Scarce X
	6.	Cover Abundance (overhanging banks,	logs, roots, etc.) is Good in <u>30</u> %
		of Stream, Average in50	%, Poor in%
	7.	Shade or Canopy Good over 30	% of Stream; Interferes little
		(degree) with any (ty	ppe) of fishing.
	8.	Flow (c.f.s.) 410.1: Flow compared	to Normal: LowNormal_X_High
1	9.	D.O. <u>11.7 ppm</u> Temp.	<u>59.0°F</u> % Saturation <u>115</u>
1	Ο.	Present Weather Clear and mild.	
1	l.	Past Weather (last 24 hours) Clea	r and mild.
13	2.	D.O. <u>11.7</u> pH <u>8.0</u> Temp. <u>59.0</u> Conduc	tivity_312
13	3:	Comments: Sample location at "Th	e Rounds" below Horton Ford,
		Clinch River mi, 195.0.	

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Clinch River La	at-Long 363414N - 825834W
Body of Water Clinch River Da	te 30 October 1986
	each 06010205-17.0
Type of Sampling Electrofishing Po	ool Elevation 1159'
Gear Type Boat shocking & backpack Ti	me 1500-1630

300' sample length								
Name	SPECIES	CODE	NUMBER	LENGTH	WT.	*	*	*
Ambloplit	es rupestris	13	5	2	t			<u> </u>
11	ff	11	2	3	t			<u> </u>
11	11	11	2	14	0.05			-
· tt	11	11	7	5	0.6			
tt	11	ř t	9	6	1.75			<u> </u>
. 11	Ħ	. 11	13	7	2.8			
11	TT .	11	2	8	0.7			
11	ft	11	1	10	0.6			<u> </u>
Lepomis m	acrochirus	206	1	5	0.1			<u> </u>
Lepomis m		208	1	1 1	t			
!!	!!	!t	28	2	0.15			<u> </u>
ff	11	` tt	2	3	t			
11	11	†1	6	4	0.3			
TT.	tt	11	5	5	0.4			<u> </u>
11	T!	tt	3	6	0.4			
Micropter	rus dolomieui	218	5	3	0.1			
11	tt .	11	11	4	0.35			
!1	f1	11	5	5	0.4	l .		
11	11	11	1	1 6	0.2			
t1	11	11	6	7	1.05			:
1!	11	11].	1 9	0.3			
11	11	11	2	10	1.0			
ŢŢ	11	11	2	11	1.2			
!t	11	11	1	14	1.3			
!1	11	IT	1	16	2.05			

* Label Parameter Listed	Continued on next page	
Field Notes:		
Name of Collector(s): Rick	D. Bivens, Duane Oyer, and Chester J. Ellison	

WR-0325

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Clinch River	Lat-Long 363414N - 825834W
Body of Water Clinch River	Date 30 October 1986
County or River Mile Hancock	Reach 06010205-17.0
Type of Sampling <u>Electrofishing</u>	Pool Elevation 1159'
Gear Type Boat shocking & backpack	Time 1500-1630
shocking on riffle areas. 300' sample length	

SPECIES .					*		
Name	CODE	NUMBER	LENGTH	WI.		*	*
Micropterus dolomieui	218].	18	2.7			
Micropterus punctulat	ıs 219	1	8	0.25			
ii ti	37	4	4	0.15	1		
Hypentelium nigricans	166	5	5-14	1.5			
Dorosoma cepedianum	48	40	6-12	15.7			<u> </u>
Aplodinotus grunniens	20	3	14-21	9.3			
Moxostoma carinatum	228	4	18-24	12.9			
Moxostoma duquesnei	229	22	4-17	17.55	1		
Moxostoma erythrurum	230	21	3-16	13.95			
Moxostoma							
macrolepidotum	231	7	6-18	8.0			!
Campostoma anomalum	25	14	4-6	0.5			Ì
Hybopsis amblops	155	23	2	0.05			
Hybopsis dissimilis	157	5	3-4	0.05			
Nocomis micropogon	234	2	6-9	0.4			
Notropis ariommus	238	9	2-3	0.05			
Notropis chrysocephal	ıs 249	43	2-5	0.4			1
Notropis coccogenis	248	2	4	t		ļ	
Notropis leuciodus	255	6	2	t	İ		
Notropis photogenis	259	7	3	0.05	[]		
Notropis rubellus	260	22	1-2	t	İ		
Notropis sp. cf.							
Notropis spectruncul	ıs 266	172	1-2	0.15		1	
Notropis spilopterus	269	21	1-2	t			
Notropis telescopus	272	2	2-3	t			

* Label Parameter Listed	Continued	on next	page
Field Notes:			

Name of Collector(s): Rick D. Bivens, Duane Oyer, and Chester J. Ellison

WR-0525

TENNESSEE WILDLIFE RESOURCES AGENCY

	1ENNESS	EE MITDI	TIE KESOUK	CES AGENC	L		·			
Watershed Clinch Riv	er		Lat-Long	362414N	rj - 8258	34W				
Body of Water Clinch	River		Date 30 October 1986							
County or River Mile Ha	ncock		Reach 06010205-17.0							
Type of Sampling Electr	ofishin	g	Pool Eleva	tion	L159'					
Gear Type <u>Boat shocking</u> shocking on r 300' sample]	reas.	Time 1500	-1630							
SPECIES Name	CODE	NUMBE)	LENGTH	wr.	*	*	*			
Notropis volucellus	277	110	1-3	0.15	İ					
Phenacobius uranops	330	1	4	t	. [
Pimephales notatus	334	39	2-3	0.1						
Etheostoma blennioide		12	3-4	0.1						
Etheostoma camurum	85	1	2	t	:					
Etheostoma rufilinear	um 108	3	13	t	i I					
Etheostoma simoterum		6	2	t						
Etheostoma tippecano	130	1	1 1	t						
Etheostoma zonale	135	5	2-3	t						
Percina aurantiaca	304	16	3-6	0.5						
Percina caprodes	306	11	1 1	t						
Noturus eleutherus	283	1 1	2	t			<u> </u>			
			<u> </u>				i			
							i			
						1	·			
			<u> </u>				:			
		<u> </u>				!	:			
						1				
		<u> </u>	<u> </u>							
* Label Parameter Listed					•					
Field Notes:										

Field No	otes:		~	······································	. ,						
Name of	Collector(s):_	Rick	D.	Bivens,	Duane	Oyer,	and	Chester .	J.	Ellison	
WR-C525											

Clinch River: Site # 2, Edge Surber sample

29 October 1986

Field # 018

Hancock Co., TN; Clinch River mile 195.0, at "The Rounds". Coordinates: 363414N - 825834W. Looneys Gap, Tenn.-VA., # 179 SW Quad. Reach # 06010205-17.0.

TAXA	NUMBER
COLEOPTERA: Elmidae/Stenelmis larvae	4
DIPTERA: Unidentified pupa Chironomidae	1 7
EPHEMEROPTERA: Heptageniidae/Stenonema Potamanthidae/Potamanthus Tricorythidae/Tricorythodes	4 17 1
GASTROPODA: Pleuroceridae/Anculosa subglobosa Pleurocera unciale	1 1
LEPIDOPTERA: Pyralidae/Petrophila	1
TRICHOPTERA: Brachycentridae/Brachycentrus	1
	38

Volumetric Displacement was 0.5 ml.

Clinch River: Site # 2, Midstream Surber sample

29 October 1986

Field # 018

Hancock Co., TN; Clinch River mile 195.0, at "The Rounds". Coordinates: 363414N - 825834W. Looneys Gap, Tenn.-VA., # 179 SW Quad. Reach # 06010205-17.0.

TAXA	NUMBER
DIPTERA: Chironomidae Tipulidae/Antocha	1 3
GASTROPODA: Pleuroceridae/Pleurocera unciale	2
TRICHOPTERA: Brachycentridae/Brachycentrus Hydropsychidae/Hydropsyche hoffmani	9
	16

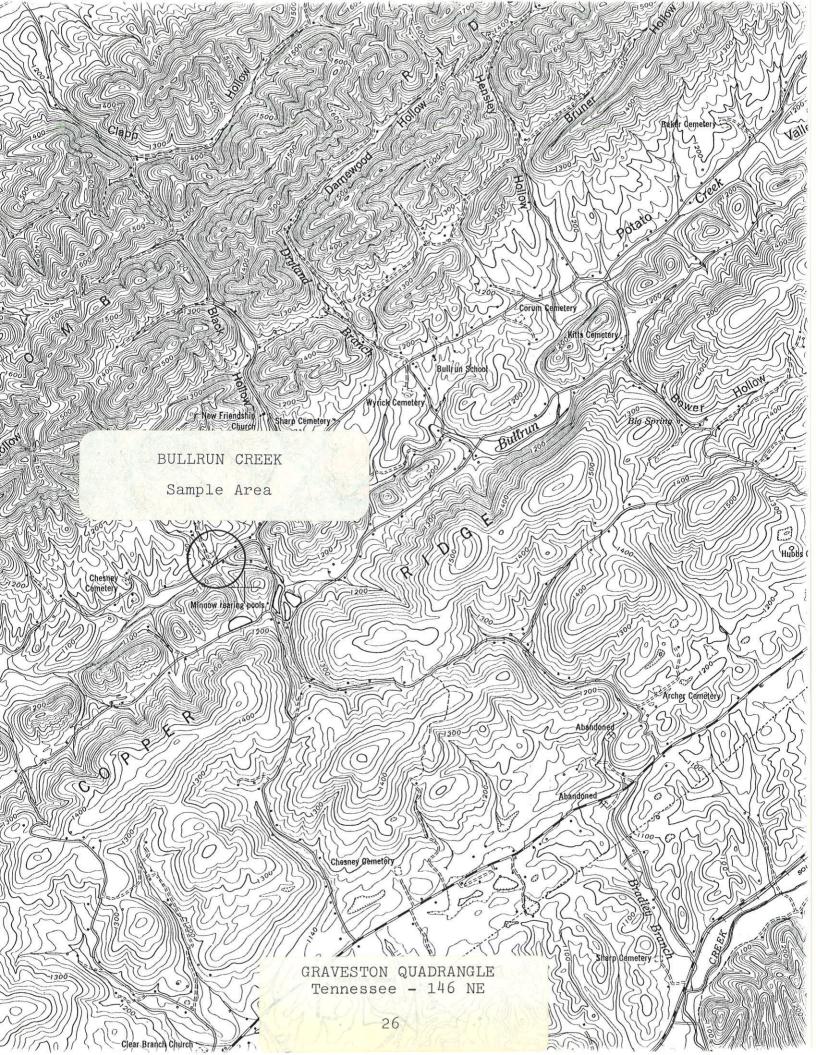
Volumetric Displacement was 0.4 ml.

Bullrun Creek (Upper)

One qualitative fishery survey was conducted in September 1986:

- Location and Length The sample area was located upstream of Ailor Gap approximately 0.2 mi. SW of county road junction with Highway 370 and was sampled on 13 September 1986. It was 300 ft. in length and averaged 13.9 ft. in width. The site was in Union County. Graveston Quadrangle.
- Gear Type The site was sampled using backpack electrofishing equipment. One shocker was used at this site.
- Water Quality Data were taken from midstream with a 4041 Hydrolab.
 On 12 September 1986: DO 8.3 ppm, pH 7.6, Temperature 69.4 F, Conductivity 323 microchos/cm.
- Benthos Collection Benthic organisms were collected from two square-foot Surber samples at the site. The samples averaged 29 organisms, 0.3 ml. volumetric displacement, and represented 12 different taxa.

Fish Collected:


		% by		% by
Species	No.	No.	Wt.	Wt.
Spotted bass Rock bass Bluegill Redbreast sunfish Longear sunfish	36 25 4	0.4 0.8 0.3 0.7 0.5	0.25 0.25 0.05 0.1 0.05	3.9 3.9 0.8 1.6 0.8
Nongame Fish Forage Fish	15 728	2.0 95.4	0.8 4.9	12.5 76.6
Total	763		6.4	

Comments - This stream was surveyed primarily to assess its potential for trout. Trout have been stocked by various people over the years in upper Bullrun Creek and there have been recent reports of trout being caught in the upper reach, however, we collected none. Water temperature at the time we sampled the stream was adequate to support trout, however, a future check of water temperature in mid-summer would be necessary to determine if they could survive throughout the

year. The stream has no known pollution other than typical non-point-source siltation from adjacent agricultural land. Any natural reproduction of trout (provided water temperatures are adequate) would be limited due to this siltation.

Bullrun Creek is known to have good rock bass (Ambloplites rupestris) and smallmouth bass (Micropterus dolomieui) fishing in the lower stream reaches. Rock bass were the primary game fish in our collections but no smallmouth bass were found. However, spotted bass (M. punctulatus) were present, along with bluegill (Lepomis macrochirus), redbreast sunfish (L. auritus), and longear sunfish (L. megalotis). It is interesting to note the presence of the native longear sunfish along with the exotic redbreast sunfish which appears to be replacing the longear in much of the upper Tennessee River drainage (Etnier et al. 1983). We collected almost equal numbers of the two species. A total of 19 fish species was collected from the site.

Benthic macroinvertebrates from our samples included Baetidae, Caenidae, Heptageniidae, and Oligoneuriidae mayflies, Elmidae and Psephenidae beetles, and the hellgrammite (Corydalus cornutus).

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

Α.	I.	O	C	A	т	7	O	Ν

	Wa	tershead Clinch River	Lat-Long 361236N - 834738W
	St	ream Bullrun Creek (Upper)	Length of Sample 300'
	Ar	ea or Station Above Ailor Gap	Reach 06010204-14,2
	Cot	untyUnion	Date/Time 12 September 1986/1030
		ta Collected By Rick D. Bivens a	
в.	PHY	YSICAL CHARACTERISTICS	
	1.	Average Width 13.91 Average	Depth 0.5' Maximum Depth 1.9'
-	2.	Estimated Percent of Stream in Pools	
	3.	Estimated Percent Pool Bottom is Muc	d <u>10 % Silt 20 % Sand 5 %</u>
		Clay 5 % Gravel 20 % Rubb	ole 40 % Boulders - %
		Bedrock - % Other - %	
	4.	Estimated Percent Riffle Bottom is N	Mud 20 % Silt 40 % Sand 10 %
		Bedrock - % Other Rubble	30%
	5.	Abundance of Littoral Aquatic Plants	s is Numerous
		Average X	Scarce
	6.		logs, roots, etc.) is Good in%
		of Stream, Average in15	%, Poor in <u>15</u> %
	7.	Shade or Canopy Good over 50	_% of Stream; Interferes some
		(degree) with <u>fly</u> (t	ype) of fishing.
	8.	Flow (c.f.s.) 7.2 : Flow compare	d to Normal: Low Normal X High
,	9.	D.O. <u>8.3 ppm</u> Temp	. 69.4°F % Saturation 92
1.0	0.	Present Weather Partly cloudy	
1.	1.	Past Weather (last 24 hours) Part	ly cloudy with light showers.
1:	2,	D.O. <u>8.3</u> pH <u>7.6</u> Temp. <u>69.4</u> Condu	ctivity 323
13	3:	Comments: Sample location 0.2 mi	. southwest of county road junction
		with state highway 370, just a	above new bridge on the county road.

FISH FIELD DATA FORM

	TENNESS	SEE WILDL	IFE RESOUR	RCES AGENO	Y			
Watershed Clinch Riv		Lat-Long	361236N	- 83473	38W			
		Date 12 September 1986						
County or River Mile U			Reach 06010204-14,2					
Type of Sampling Elect		ng	Pool Eleva	tion :	1040'			
Gear Type Backpack S			Time131					
300' sampl		•						
SPECIES Name	CODE	NUMBER	LENGTH	WI.	ń	*	*	
Ambloplites rupestri	1.3	1	6	0.1				
11 11	!!	1	5	0.1				
11 11	tt	2	3	0.05			1	
11 11	11	2	2	t				
Lepomis auritus	201	4	3	0.05				
ii ii	11	1	4	0.05				
Lepomis macrochirus	206	1	4	0.05				
11 11	tt	1	3	t				
Lepomis megalotis	208	1	2	t	i			
!!	11	2	3	t				
11 . 11	11	1.	4	0.05			ļ	
Micropterus punctula	1 tus 219	1	'7	0.15			<u>'</u>	
11	11	1	6	0,1				
ıı tı .	tī	1	3	t				
Catostomus commerson	i 32	2	_	0.3	·			
Hypentelium nigrican	1	13		0.5	·		i	
Campostoma anomalum	25	408		3.2			<u> </u>	
Hybopsis amblops	155	8	2-3	t		<u> </u>		
Notropis chrysocepha	1	165	1-6	1,45	1			
Notropis spilopterus	1	6	2	t				
Notropis telescopus	272	3	3	t			:	
Pimephales notatus	334	60	1-3	0.15	<u> </u>			
	-					!		
Continued on	next	page						
	!		İ	!		ļ		
* Label Parameter Listed								

	· · · · · · · · · · · · · · · · · · ·				<u>;</u>		
Continued on	<u>next</u>	page			į		
* Label Parameter List	ced						
Field Notes:					1		
Name of Collector(s):	Rick D.	Bivens	and Chester	J. Elli	son		
WR-G525						•	

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Clinch Rive Body of Water Bullrun (Creek (L	lpper) 1	Date]2	Septemb	er 1986	738W	
County or River Mile Union			****				
Type of Sampling Electrofishing			Pool Eleva	ition 1	040'		····
Gear Type Backpack Sh	nocker		Time <u>1315</u>	to 141	5		
300' sample	e length	1					
SPECIES Name	CODE	NUMBER	LENGTH	wr.	*	*	*
Rhinichthys atratulus	351	18	2-3	t		<u> </u>	
Semotilus atromaculat	us 360	1	2	t			
Etheostoma jessiae	96	4	2-3	t			
Etheostoma rufilineat	um 108	31	1-2	0.1			
Etheostoma simoterum	111	19	2-3	t			
Cottus carolinae	40	5	2-3	t		<u> </u>	
					}		
						<u> </u>	!
			ļ				
					<u> </u>		1
						<u> </u>	
		<u></u>			!		
							1
					<u> </u>		
					<u> </u>		:
					<u> </u>		
Label Parameter Listed							
Field Notes:							
			····				
Name of Collector(s):	Rick :	D. Bive	ns and C	hester J	. Ellis	on	

29

WR-0525

Bullrun Creek (Upper): Edge Surber sample

12 September 1986

Field # 010

Union Co., TN; 0.2 mi. SW of county road junction with state hwy. #370. Coordinates: 361236N - 834738W. Graveston, Tenn., # 146 NE Quad. Reach # 06010204-14,2.

TAXA	NUMBER
COLEOPTERA:	
Elmidae/Stenelmis larvae	2 2 2
adults Psephenidae/ <u>Psephenus herricki</u>	2
DIPTERA:	٦
Unidentified pupa Chironomidae	1 2
EPHEMEROPTERA:	_
Baetidae/ <u>Baetis</u> Caenidae/Caenis	3
Heptageni idae/H eptagenia	3 8 2 8 4 1
Stenonema Oligoneuriidae/Isonychia	Ы Д
Potamanthidae/Potamanthus	ĺ
MEGALOPTERA:	1.
Corydalidae/Corydalus cornutus	24
ODONATA:	_
Coenargionidae/ <u>Argia</u>	1
	40

Volumetric Displacement was 0.5 ml.

Bullrun Creek (Upper): Midstream Surber sample

12 September 1986

Field # 010

Union Co., TN; 0.2 mi. SW of county road junction with state hwy. #370. Coordinates: 361236N - 834738W. Graveston, Tenn., # 146 NE Quad. Reach # 06010204-14,2.

TAXA	NUMBER
COLEOPTERA: Elmidae/Stenelmis larva adult Psephenidae/Psephenus herricki	1 1 2
DIPTERA: Chironomidae	4
EPHEMEROPTERA: Baetidae/Baetis Caenidae/Caenis Heptageniidae/Stenonema Oligoneuriidae/Isonychia	2 2 1 1
MEGALOPTERA: Corydalidae/Corydalus cornutus	2
TRICHOPTERA: Hydropsyche pupa	<u> </u>
	17

Volumetric Displacement was 0.13 ml.

North Fork Bullrun Creek

One qualitative fishery survey was conducted in September 1986:

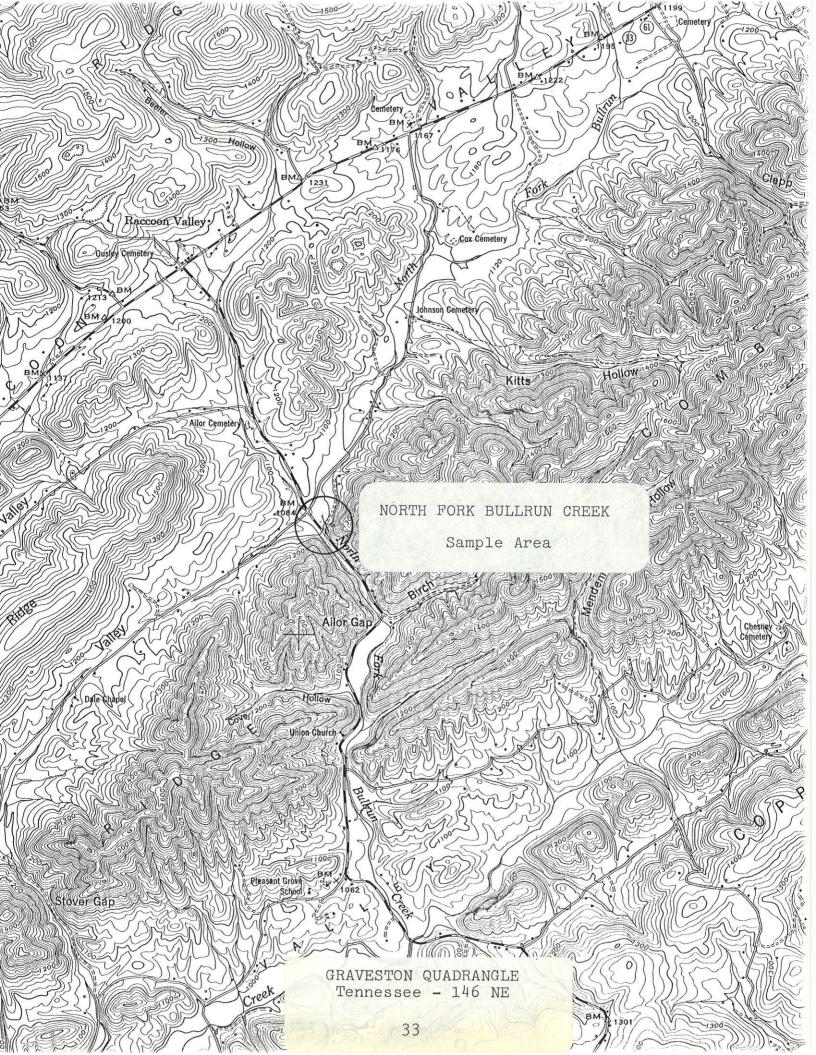
Location and Length - The sample area was located 1.1 mi. SE of Highway 33 junction with Highway 144, just upstream of the bridge on 144, near Ailor Gap. It was sampled on 12 September 1986 and was 300 ft. in length. The site was in Union County. Graveston Quadrangle.

Gear Type - The site was sampled using backpack electrofishing equipment. One shooker was used at this site.

Water Quality - Data were taken from midstream with a 4041

Hydrolab. On 12 September 1986: DO - 8.1 ppm, pH - 7.8,

Temperature - 74.5 F, Conductivity - 358 micromhos/cm.


Benthos Collection - No collection made at this site.

Fish Collected:

		% by		% by
Species	No.	No.	Wt.	Wt.
Smallmouth bass Rock bass Redbreast sunfish Longear sunfish	3 10 1 8	1.0 3.2 0.3 2.6	0.2 0.75 t 0.05	5.2 19.5
Nongame Fish Forage Fish	6 281	1.9 91.0	0.4 2.45	10.4 63.6
Total	309		3.85	

Comments - This stream was surveyed in addition to the sampling of upper Bullrun Creek as we were in the area and had time for a quick spot check. However, time did not allow for a full habitat survey and the sampling was done primarily to develop a fish species diversity list for TADS.

Rock bass (Ambloplites rupestris) were the primary game fish in our collections and smallmouth bass (Micropterus dolomieui) were also present. It is interesting to note, as in Bullrun Creek, the presence of the native longear sunfish (Lepomis megalotis) along with the exotic redbreast sunfish (L. auritus) which appears to be replacing the longear in much of the upper Tennessee River drainage (Etnier et al. 1983). A total of 16 fish species was collected from this site.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

	Wa	tershead Clinch River Lat-Long 361253N - 834955W
	Sti	ream North Fork Bullrun Creek Length of Sample 300'
	Are	ea or Station Near Ailor Gap Reach 06010204-24,0
		nty Union Date/Time 12 September 1986/1630
		a Collected By Rick D. Bivens and Chester J. Ellison
В.	PHY	SICAL CHARACTERISTICS
	1.	Average Width - Average Depth - Maximum Depth -
	2.	Estimated Percent of Stream in Pools is
	3.	Estimated Percent Pool Bottom is Mud % Silt % Sand %
		Clay - % Gravel - % Rubble - % Boulders - %
		Bedrock - % Other - %
	4.	Estimated Percent Riffle Bottom is Mud % Silt % Sand %
		Bedrock % Other
	5.	Abundance of Littoral Aquatic Plants is Numerous
		Average Scarce
(6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in %
		of Stream, Average in
;	7.	Shade or Canopy Good over % of Stream; Interferes
		(degree) with (type) of fishing.
8	3.	Flow (c.f.s.) _ : Flow compared to Normal: Low Normal High_
ç	€.	D.O. 8.1 ppm Temp. 74.5°F % Saturation 95
10).	Present Weather -
11		Past Weather (last 24 hours)
12	2.	D.O. 8.1 pH 7.8 Temp. 74.5 Conductivity 358
13	3:	Comments: Sample location 1.1 mi. southeast of state highway 33
		junction with state highway 144, just above the bridge on 144.
		Only water quality data were recorded for this sample.

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Clinch River	Lat-Long 361253N - 834955W
Body of Water N. Fork Bullrun Creek	Date 12 September 1986
County or River Mile Union	Reach 06010204-24,0
Type of Sampling Electrofishing	Pool Elevation 1062'
Gear Type Backpack Shocker	Time 1530-1630
300' sample length	

SPECIES	CODE	NUMBEE	LENGTH	WI.	*	*	*
Ambloplites rupestris		1	8	0.25	<u> </u>	1	1
11 11	11	1	7	0.2			
T1 t1	11	l	6	0.1	 		<u> </u>
it It	11	1	5	0.1			
tt tt	71	3	4	0.1	1		İ
11	11	2	2	t	T		
tt t1	11	7	1	t			
Lepomis auritus	201	1	3	t			
Lepomis megalotis	208	1	1	t			
\$T 11	tt .	3	2	t			!
ti ti	11	4	3	0.05			
Micropterus dolomieui	218	2	6	0.2			
T1 51	11	1	3	t			
Hypentelium nigricans	166	6		0.4			
Campostoma anomalum	25	94	_	1.2			
Hybopsis amblops	155	13	2-3	0.05			Ī
Notropis chrysocephal		65	1-4	0.9			
Notropis spilopterus	269	1	2	t			
Notropis telescopus	272	29	2-3	0.05			!
Pimephales notatus	334	49	1-3	0.25			
Rhinichthys atratulus		3	2	t			!
Etheostoma jessiae	96	1	3	t			
Etheostoma rufilineati	ım 108	6	2	t	1		
Etheostoma simoterum	111	17	1-2	t			
Cottus carolinae	40	3	1-2	t		ļ	:

Etheostoma rufilinea	tum 108	6	2	t	!			
Etheostoma simoterum	111	17	1-2	t				
Cottus carolinae	40	3	1-2	l t		ļ	:	
* Label Parameter Listed			•					÷
Field Notes:								
Name of Collector(s):	Rick D.	Bivens	and Ches	ter J.	Ellison			
WR-G525								

Hinds Creek

Two qualitative fishery surveys were conducted in June 1987:

- Location and Length Tributary to the Clinch River. Sample area 1 was at the first bridge on the county road that is just upstream form I-75, stream mi. 10.05. The sample area was 200 ft. in length and averaged 31 ft. in width. Sample area 2 was upstream of the first bridge crossing on the county road just upstream of Anderson/Union County line. The sample area was 200 ft. in length and averaged 16.9 ft. in width. Both sites were sampled on 8 June 1987. Site 1 was in Anderson County. Norris Quadrangle. Site 2 was in Union County. Big Ridge Park Quadrangle.
- Gear Type Both sites were sampled using backpack electrofishing equipment. Each area was sampled using a single shocker operating at 110 v. AC.
- Water Quality Data were taken from midstream with a 4041

 Hydrolab on 8 June 1987. Area 1: DO 8.5 ppm, pH 7.2,

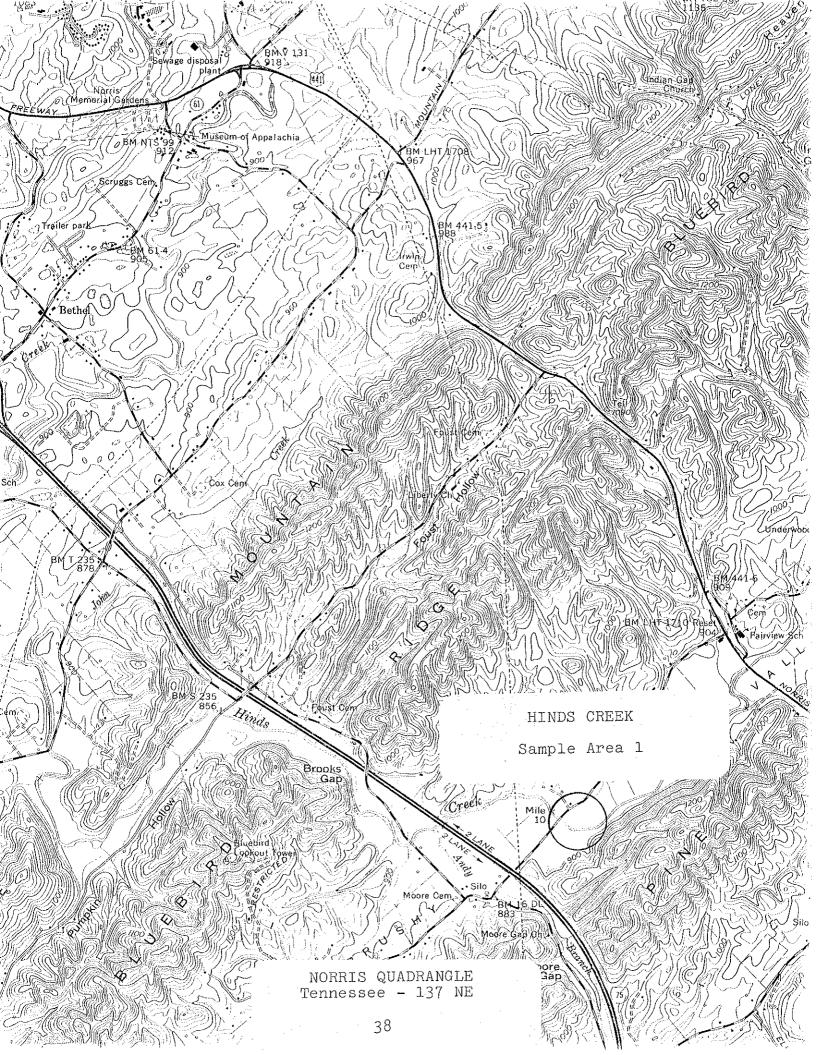
 Temperature 68.9 F, Conductivity 130 micromhos/cm.

 Area 2: DO 9.0 ppm, pH 7.6, Temperature 73.2 F,

 Conductivity 331 micromohs/cm.
- Benthos Collection Benthic organisms were collected from two square-foot Surber samples at each site. Area 1 averaged 64 organisms, 0.6 ml. volumetric displacement. and represented 16 different taxa. Area 2 averaged 23 organisms, 0.5 ml. volumetric displacement, and represented 13 different taxa.

Fish Collected:

	Area 1					Ar	<u>ea 2</u>	
<u>Species</u>	No.	% by No.	Wt.	% by Wt.	No.	% by	Wt.	% by Wt.
Smallmouth bass Spotted bass Rock bass Bluegill Redbreast sunfish	2 1 1 6 17	0.3 0.2 0.2 1.0 2.8	0.15 1.1 t 0.5 0.45	1.6 11.4 5.2 4.7	12 1 10	2.7 0.2 2.3	1.25 t 0.3	11.4
Nongame Fish Forage Fish	37 535	6.2 89.3	3.0 4.45	31.1 46.1	40 380	9.0 85.8	6.6 2.85	60.0 25.9
Total	599		9.65		443		11.0	


Comments:

This stream was surveyed primarily to develop a fish species diversity list and collect stream information for TADS. Game fish from both sites included smallmouth bass (Micropterus dolomieui), spotted bass (M. punctulatus), rock bass (Ambloplites rupestris), bluegill (Lepomis macrochirus), and redbreast sunfish (L. auritus). Smallmouth and spotted bass were collected only from the lower sample area while rock bass, bluegill, and redbreast sunfish were collected from both sites. We collected a total of 22 fish species from both sites combined, similar to those reported by Etnier et al. (1983). In their survey, they collected almost equal numbers of the longear sunfish (L. megalotis) and redbreast sunfish, however, we found no longear sunfish at either site.

It is also interesting to note the occurrence of the stripetail darter (*Etheostoma kennicotti*) from our upper sample area. This species inhabits small, slab-pool streams and although locally common, it is sporatically distributed in the Tennessee River portion of its range (Page 1980; Page and Smith 1976).

The stream receives fairly heavy non-point-source siltation throughout the watershed and tolerant species dominate the fish fauna.

Benthic macroinvertebrates from our samples included Baetidae, Caenidae, Heptageniidae, and Oligoneuriidae mayflies, Hydropsychidae, Limnephilidae, and Philopotamidae caddisflies, chironomids, and Elmidae and Psephenidae beetles. Asian clams (Corbicula fluminea) and river snails (Goniobasis simplex and Pleurocera unciale) were also present.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

Α.	LOC	ATION
	Wat	ershed Clinch River Lat-Long 360832N - 840227W
	Str	eam Hinds Creek Length of Sample 200'
	Are	a or Station Site # 1 Reach 06010204-17,0
	Cou	nty Anderson Date/Time 8 June 1987/1145
		a Collected By Rick D. Bivens and Chester J. Ellison
в.		SICAL CHARACTERISTICS
	1.	Average Width 31' Average Depth 0.8' Maximum Depth 2.7'
	2.	Estimated Percent of Stream in Pools is 50 %
	3.	Estimated Percent Pool Bottom is Mud 20 % Silt 30 % Sand 20 %
		Clay 10 % Grave1 10 % Rubble 10 % Boulders - %
		Bedrock - % Other - %
	4.	Estimated Percent Riffle Bottom is Mud 10 % Silt 30 % Sand 30
		Bedrock - % Other Rubble 30%
	5.	Abundance of Littoral Aquatic Plants is Numerous
		AverageScarceX
	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in 50
		of stream, Average in35%, Poor in15%.
	7.	Shade or Canopy Good over 80 % of Stream.
	8.	Flow (c.f.s.) 20.8 : Flow compared to Normal: Low Normal X High
	9.	D.O. 8.5 ppm Temp. 68.9°F % Saturation 93
	10.	Present Weather Partly cloudy and warm; air temp. 82°F
	11.	Past Weather (last 24 hours) Partly cloudy and warm.
	12.	D.O. 8.5 pH 7.2 Temp. 68.9 Conductivity 130
	13.	Comments: Sample location at the first bridge on county road that
		is just upstream from I-75; stream mile 10.05. Stream is fairly
		silty, but has good cover for fish (logs, etc.).

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Clinch River	Lat-Long 360832N - 840227W
Body of Water Hinds Creek	Date 8 June 1987
County or River Mile Anderson	Reach 06010204-17,0
Type of Sampling Electrofishing	Pool Elevation 863'
Gear Type Backpack Shocker	Time 1310-1400
200' sample length	1

Nam e	SPECIES	CODE	NUMBER	LENGTH	wr.	*	*	*
Ambloplites	nunestnic		1	2	t	····		
Lepomis aux		201	1	6	0.1			
11	tt	11	2	5	0.15			
. 11	11	11	1	4	0.05	~		
1!	r r	11	3	3	0.05	·	***************************************	
††	ΤΤ	₹ 1	10	2	0.1			
Lepomis mad	rochirus	206	1	7	0.2			
††	ři –	!!	1	6	0.1			
t i	īī	11	1	5	0.1			
11	11	tt	1	4	0.05			
tt	11	11	2	3	0.05			
Micropterus	dolomieui	218	1.	5	0.05			
11	11	11	1	6	0.1			
Micropterus	punctulat	us 219	1.	13	1.1			
Hypentelium		166	34	1-9	2.7			
Moxostoma d	uquesnei	229	_2	67	0.2			
Moxostoma e	rythrurum	230	1	7	0.1			
Campostoma	anomalum	25	342	1-5	3.45			
Tybopsis am	blops	155	21	2-3	0.05			
Votropis ch	rysocephal	ıs 249	43	2-6	0.65	:		
Votropis ga		253	6	2-4	t	-		
Notropis sp	ilopterus	269	20	1-3	0.05			
oimephales :	notatus	334	18	1-3	0.05			
Contin	ued on	next	page					

* Label Parameter Listed	l							
Field Notes:								
Name of Collector(s):	Rick D.	Bivens	and	Chester	J.	Ellison	······································	

WR-0525

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

	TENNESS	SEE WILD	LIFE RESOUF	RCES AGEN	CY .		
Watershed Clinch Riv	<i>r</i> er		Lat-Long	360832N	· - 84022	27W	
Body of Water Hinds Cr	reek		Date 8 J				
County or River Mile And				~~~			»
Type of Sampling Electr							· · · · · · · · · · · · · · · · · · ·
Gear Type Backpack Sh					<u> </u>		
200' sample			111116 101	.0 1.100		· · · · · · · · · · · · · · · · · · ·	
		·	T	T			
SPECIES Name	CODE	NUMBER	LENGTH	WI.	*	*	*
Etheostoma blennioide	s 81	` 5	1-3	t			
Etheostoma jessiae	96	4	2	t			:
Etheostoma rufilineat	um 108	27	1-2	0.1			
Etheostoma simoterum	111	27	1-2	0.05			
Cottus carolinae	40	22	1-4	0.05			
					<u> </u>		
					·		
	·						
					1		
						i	

Lavel lalameter bis	ceu				
Field Notes:					
Name of Collector(s):	Rick D.	Bivens	and Chester J.	Ellison	

WR-0525

Hinds Creek: Site # 1, Edge Surber sample

8 June 1987

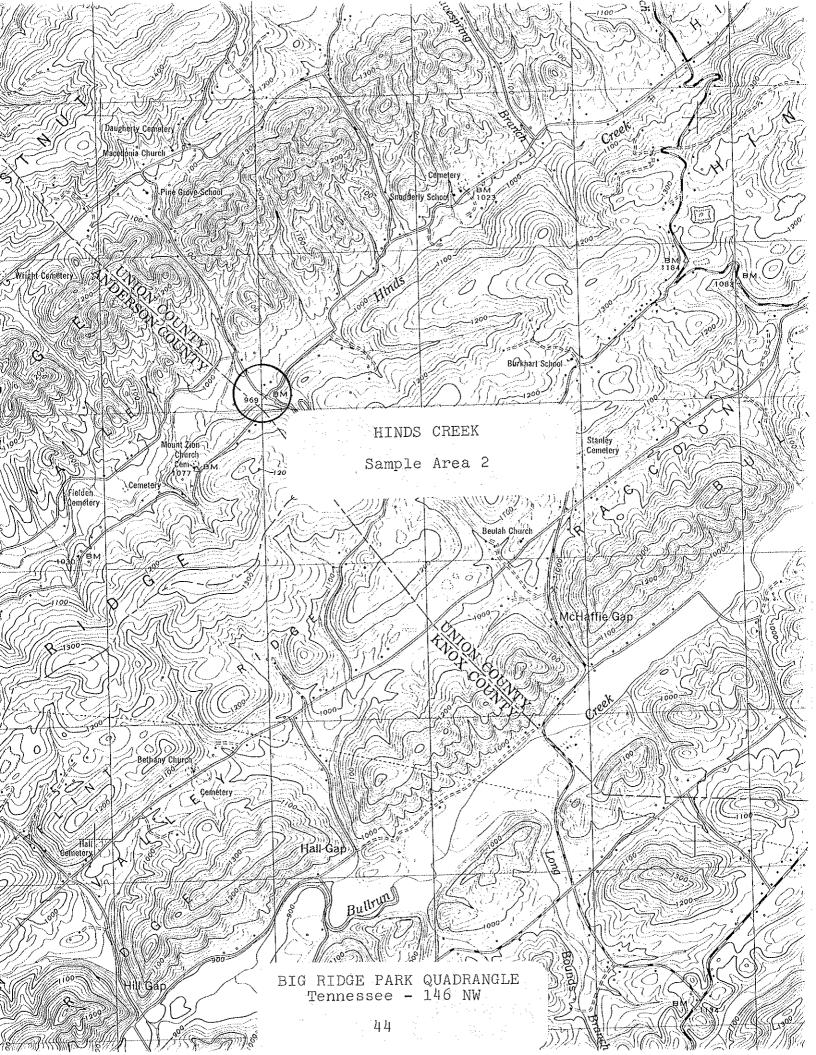
Field # 034

Anderson Co., TN; Upstream of county road bridge at stream mi. 10.05. Coordinates: 360832N - 840227W. Norris, Tenn., # 137 NE Quad. Reach # 06010204-17,0.

TAXA	NUMBER
COLEOPTERA: Elmidae/Optioservus larva Psephenidae/Psephenus herricki	1,4
DECAPODA:	2
DIPTERA: Unidentified pupa Chironomidae	1 16
EPHEMEROPTERA: Caenidae/Caenis Heptageniidae/Stenonema	9 6
MEGALOPTERA: Corydalidae/Nigronia serricornis	1
ODONATA: Gomphidae/Lanthus	1
PELECYPODA: Corbiculidae/Corbicula fluminea	1
TRICHOPTERA: Hydropsychidae/Cheumatopsyche Limnephilidae/Neophylax	3
	46

Volumetric Displacement was 0.5 ml.

Hinds Creek: Site # 1, Midstream Surber sample


8 June 1987

Field # 034

Anderson Co., TN; Upstream of county road bridge at stream mi. 10.05. Coordinates: 360832N - 840227W. Norris, Tenn., # 137 NE Quad. Reach # 06010204-17,0.

TAXA	NUMBER
COLEOPTERA: Psephenidae/Psephenus herricki	3
DECAPODA:	5
DIPTERA: Unidentified pupae Chironomidae	2 28
EPHEMEROPTERA: Baetidae/Baetis Caenidae/Caenis Heptageniidae/Stenonema Oligoneuriidae/Isonychia	2 13 2 2
OLIGOCHAETA:	1
PELECYPODA: Corbiculidae/Corbicula fluminea	15
TRICHOPTERA: Hydropsychidae/Cheumatopsyche Philopotamidae/Chimarra	8 1
	82

Volumetric Displacement was 0.75 ml.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

Α.	LOC	CATION							
		ershed Clinch River Lat-Long 361133N - 835648W							
	Str	eam Hinds Creek Length of Sample 200'							
	a or Station Site # 2 Reach 06010204-19,1								
County Union Date/Time 8 June 1987/1630									
	Data Collected By Rick D. Bivens and Chester J. Ellison								
В.	PHY	SICAL CHARACTERISTICS							
	1.	Average Width 16.9' Average Depth 0.5' Maximum Depth 2.0'							
	2.	Estimated Percent of Stream in Pools is%							
	3.	Estimated Percent Pool Bottom is Mud 20 % Silt 30 % Sand 20 %							
		Clay - % Gravel 10 % Rubble 10 % Boulders 10 %							
		Bedrock - % Other - %							
	4.	Estimated Percent Riffle Bottom is Mud 10 % Silt 10 % Sand 30							
		Bedrock - % Other Rubble 40% Boulders 10%							
	5.	Abundance of Littoral Aquatic Plants is Numerous							
		Average Scarce X							
	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in 50							
		of stream, Average in 25 %, Poor in 25 %.							
	7.	Shade or Canopy Good over % of Stream.							
		Flow (c.f.s.) 6.1 : Flow compared to Normal: Low Normal X High							
	9.	D.O. 9.0 ppm Temp. 73.2°F % Saturation 102							
נ	١0.	Present Weather Partly cloudy and warm; air temp. 92°F							
1	11.	Past Weather (last 24 hours) Partly cloudy and warm.							
1	.2.	D.O. 9.0 pH 7.6 Temp. 73.2 Conductivity 331							
1	.3.	Comments: Sample location above first bridge crossing on county							
		road just upstream of county line. Silty stream - lots of							

agricultural practices in the valley.

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Site #2 - 1st bridge crossing county rd. just up-stream of county line

Watershed Clinch River	Lat-Long_ 361133N - 835648W	county li
Body of Water Hinds Creek	Date 8 June 1987	
County or River Mile Union	Reach 06010204-19,1	
Type of Sampling Electrofishing	Pool Elevation 965'	
Gear Type Backpack Shocker	Time 1740-1815	
200! sample length		

	SPECIES	CORP	NUMBER	LENGTH	wr.	*	*	*
Name		CODE	,	7.0	0.6			
Ambloplites "	rupestris	13_	1	10	0.6			
	11		1	7	0.2			
	······································	††].	6	0.1	<u>-</u>		
· tt	11	† †	2	5	0.15			
II.	†1	11	<u>l</u>	4	0.2			
tt	11	11	1	3	t			
f f	11	tt	2	2	t			
Lepomis aux		201	11	5	0.1			
f!	11	TT	4	4	0.15			
ff	Tf .	, ti	2	3	0.05	1		
Ħ	f1	11	3	2	t	·		
Lepomis mad	erochirus	206	1	3	t			
Catostomus	commersoni	32	15	2-11	1.6			
Hypentelium	nigricans	166	21	1-11	2.05			
Moxostoma e	rythrurum	230	4	5-14	2.95			
Campostoma	anomalum	25	160	1-5	1.55			
Hybopsis an	nblops	155	18	2-3	0.05			
Notropis ch	ırysocephalı	s 249	87	2-5	0.8			
Pimephales	notatus	334	37	2-3	0.15			
Rhinichthys	atratulus	351	19	1-3	0.05			-
Etheostoma	jessiae	96	8	2	t			
Etheostoma	kennicotti	98	4	2	t			
Etheostoma	rufilineatu	m 108	3	2	t			
Etheostoma		111	27	1-2	0.05			
Cottus card	linae	40	1.7	2-4	0.2			

* Label Parameter Listed	i							
Field Notes:								
	·····	·						
Name of Collector(s):	Rick D.	Bivens and	Chester J.	Ellison				

WR-G525

Hinds Creek: Site # 2, Edge Surber sample

8 June 1987

Field # 035

Union Co., TN; First bridge crossing upstream of Anderson/ Union Co. line. Coordinates: 361133N - 835648W. Big Ridge Park, Tenn., # 146 NW Quad. Reach # 06010204-19,1.

TAXA	NUMBER
DIPTERA: Unidentified pupa Chironomidae	1 4
EPHEMEROPTERA: Baetidae/Baetis Heptageniidae/Heptagenia Stenacron Stenonema	2 1 3 4
GASTROPODA: Pleuroceridae/Pleurocera unciale	1.
TRICHOPTERA: Limnephilidae/Neophylax	9
	25

Volumetric Displacement was 0.75 ml.

Hinds Creek: Site # 2, Midstream Surber sample

8 June 1987 Field # 035

Union Co., TN; First bridge crossing upstream of Anderson/ Union Co. line. Coordinates: 361133N - 835648W. Big Ridge Park, Tenn., # 146 NW Quad. Reach # 06010204-19,1.

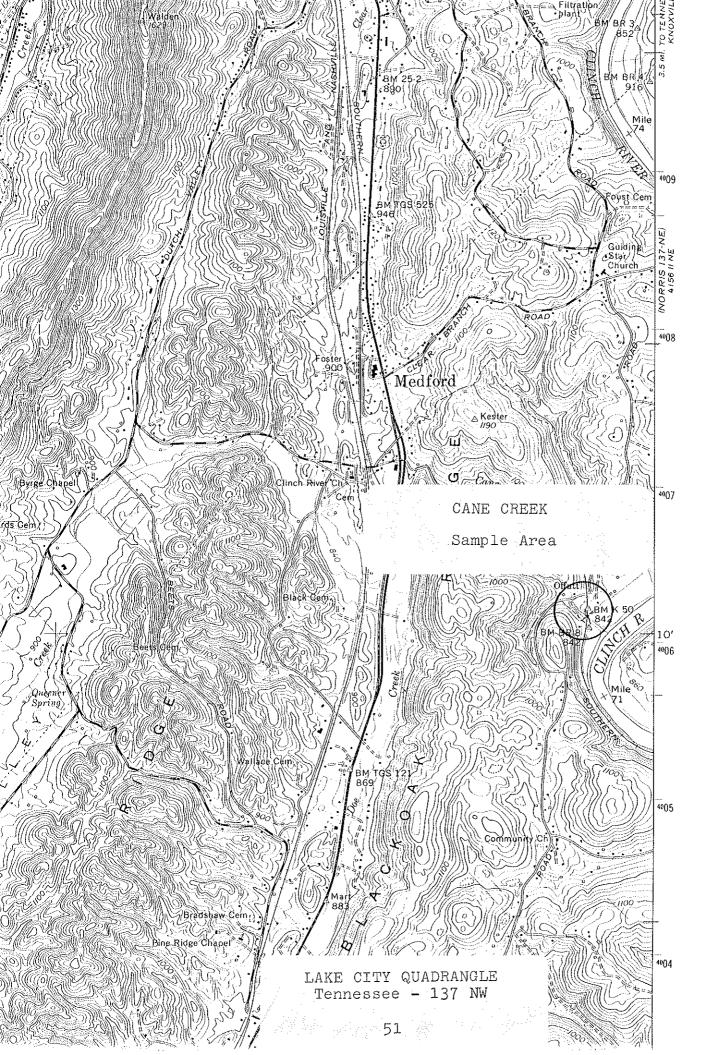
TAXA	NUMBER
COLEOPTERA: Elmidae/Stenelmis larvae Stenelmis adult	3
DIPTERA: Chironomidae	2
EPHEMEROPTERA: Baetidae/ <u>Baetis</u> Caenidae/ <u>Caenis</u> Heptageniidae/ <u>Stenacron</u> <u>Stenonema</u>	1 1 3 6
GASTROPODA: Pleuroceridae/Goniobasis simplex	1
OLIGOCHAETA:	1
TRICHOPTERA: Hydropsychidae/ <u>Cheumatopsyche</u> Limnephilidae/ <u>Neophylax</u>	1
	21

Volumetric Displacement was 0.25 ml.

Cane Creek

- One qualitative fishery survey was conducted in December 1986:
- Location and Length Tributary to the Clinch River. The sample area was located between the railroad bridges just upstream of the mouth and was sampled on 5 December 1986. It was 600 ft. in length and averaged 26 ft. in width. The site was in Anderson County. Lake City Quadrangle.
- Gear Type The site was sampled using backpack electrofishing equipment. Only one shocker, operating at 110 v. AC, was used at this site.
- Water Quality Data were taken from midstream with a 4041
 Hydrolab. On 5 December 1986: DO 12.5 ppm, pH 8.0,
 Temperature 42.1 F, Conductivity 266 micromhos/cm.
- Benthos Collection Benthic organisms were collected from two square-foot Surber samples at the site. The samples averaged 20 organisms, 0.4 ml. volumetric displacement, and represented 10 different taxa.

Fish Collected:


Species	No.	% by No.	Wt.	% by Wt.
Rainbow trout Brown trout Spotted bass Rock bass Bluegill Redear sunfish	25 1 1 3 103 1	3.8 0.2 0.2 0.5 15.8 0.2	5.0 0.45 t t 1.3	50.5 4.5 13.1
Nongame Fish Forage Fish	10 508	1.5 77.9	1.0 2.15	10.1 21.7
Total	652		9.9	

Comments - This stream was surveyed primarily to assess its trout population, develop a fish species diversity list, and collect stream information for TADS. A TWRA (1967) inventory survey reported that extensive rainbow trout (Salmo gairdneri) reproduction occurred in the stream. Game fish from our recent collection included rainbow trout, along with brown trout (S. trutta), spotted bass (Micropterus punctulatus),

rock bass (Ambloplites rupestris), bluegill (Lepomis macrochirus), and redear sunfish (L. microlophus). Bluegill were the primary game fish by number and made up about 16% of the fish collected, but rainbow trout accounted for 50% of the total weight of all fish collected. A total of 18 fish species was collected from the site.

The stream has no known pollution other than non-point-source siltation, however, trash dumping along the stream course takes away from the overall appearance. Although it is fairly silty in places, the presence of a trout population and the intolerant telescope shiner (Notropis telescopus) indicates fairly good water quality. It is also interesting to note the occurrence of the rosefin shiner (N. ardens) which has very localized populations in Ridge and Valley streams (Etnier and Starnes 1980).

Benthic macroinvertebrates from our samples were low in numbers and included Ephemerellidae, Heptageniidae, and Oligoneuriidae mayflies, elmid riffle beetles, chironomids, and limnephilid caddisflies. The Asian clam (Corbicula fluminea) was also present.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

PHYSIOCHEMICAL STREAM SURVEY FORM A. LOCATION Watershead Clinch River Lat-Long 361003N - 840747W Cane Creek Stream Length of Sample 600' Area or Station Near the mouth. Reach 06010207-County Anderson Date/Time 5 December 1986/1030 Data Collected By Rick D. Bivens, Chester J. Ellison, and Robin Ayers B. PHYSICAL CHARACTERISTICS 1. Average Width 26' Average Depth 0.6' Maximum Depth 2.8' 2. Estimated Percent of Stream in Pools is _____40 %. 3. Estimated Percent Pool Bottom is Mud 10 % Silt 20 % Sand 20 % Clay 5 % Gravel 30 % Rubble 5 % Boulders 5 % Bedrock 5 % Other - % 4. Estimated Percent Riffle Bottom is Mud 10 % Silt 20 % Sand 15 % Bedrock 5 % Other Rubble 50% 5. Abundance of Littoral Aquatic Plants is Numerous_____ Average_____Scarce X 6. Cover Abundance (overhanging banks, logs, roots, etc.) is Good in 40 % of Stream, Average in 40 %, Poor in 20 % 7. Shade or Canopy Good over 40 % of Stream; Interferes little (degree) with _____ any ____ (type) of fishing. 8. Flow (c.f.s.) 15.0 : Flow compared to Normal: Low Normal X High 9. D.O. 12.5 ppm Temp. 42.1°F % Saturation 100 10. Present Weather Clear and cool, air temp. 44°F 11. Past Weather (last 24 hours) Clear and cold, low 20s F overnight. 12. D.O. <u>12.5</u> pH 8.0 Temp. <u>42.1</u> Conductivity <u>266</u>

13: Comments: Sample location between railroad bridges just above the mouth. Stream is fairly silty. Receives a lot of trash dumping.

Evidence of use by fishermen. This section influenced by Clinch River water levels and fish fauna.

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed	Clinch River	Lat-Long <u>361003N - 840747W</u>
Body of Wate	er Cane Creek	Date 5 December 1986
County or Ra	iver Mile Anderson	Reach 06010207-
	ling Electrofishing	Pool Elevation 805'
Gear Type	Backpack Shocker	Time 1215-1330
	600' sample length	

SPECIES		NUMBER	LENGTH	wr.	*	*	*
Name	CODE					<u> </u>	ļ
Salmo gairdneri	353_	•5	7	0.5			
tf 11	. 11	6	8	0.9			
tt tt	11	8	9	1.9	·	<u> </u>	
it It	†1	6	10	1.7			
Salmo trutta	355	1	11	0.45			
Ambloplites rupestris	13	1	4	t			1
11 11	īf	2	2	t			
Lepomis macrochirus	206	3	1	t			
11 11	11	51	2	0.4			
ţt ţt	†1	40	3	0.45			
11 11	ŧτ	6	4	0.15	,		
11 11	n	2	5	0.2	`		
11 1!	Ħ	1	6	0.1			
Lepomis microlophus	209	1	3	t			<u> </u>
Micropterus punctulat	us 219	1	5	t			<u> </u>
Catostomus commersoni	32	9	3-11	1.0			1
Hypentelium nigricans	166	1	2	t			1
Campostoma anomalum	25	53	1-6	0.35			1
Hybopsis amblops	155	183	2-3	0.45			
Notropis ardens	237	35	1-3	t			ί.
Notropis chrysocephal	us 249	68	1-5	0.8			:
Notropis telescopus	272	15	2-3	t			
					1		1
Continued on	next	page					ı
			İ				

* Label Parameter Listed

Field Note: Stream is fairly silty. Receives a lot of trash dumping.

Name of Collector(s): Rick D. Bivens, Chester J. Ellison, and Robin Ayers

WR-G525

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Clinch Ri	ver	I	_at-Long	361003	N - 840	747W	
Body of Water Cane Creek			Date5_De	ecember	1986		····
County or River Mile And	derson	I	Reach 06	010207-	*****		
Type of Sampling Elect:	rofishi	.ng I	Pool Eleva	tion 80)5 '		
Gear Type Backpack Sho	ocker		[ime <u>121</u>	5-1330	1		
600' sample	length	1		Y-1	·		
SPECIES Name	CODE	NUMBER	LENGTE	wr.	*	*	*
Pimephales notatus	334	112	1-3	0.2			
Rhinichthys atratulus	351	8	1-2	t			
Etheostoma jessiae	96	2	2-3	t			
Etheostoma simoterum	111	2	2	t		<u> </u>	
Cottus carolinae	40	30	2-4	0.35			
			<u> </u>				
						ļ	
		<u> </u>					
			<u> </u>				<u> </u>
			<u> </u>	<u>, </u>			
			<u> </u>				
١.							
			ļ				<u> </u>
			<u> </u>				
			<u> </u>		<u> </u>		<u> </u>
					1		
			<u> </u>		1		<u></u>
		1	<u> </u>		1		
			1	1			
			1	1	1	1	:
				1	1		: :
	1	<u> </u>	!	:		 	i
	1		!	!		<u> </u>	
			<u>i</u>	1]		<u> </u>
	İ	!	!	1	1	1	
* Label Parameter Listed					i		
Field Notes:	· · · · · · · · · · · · · · · · · · ·		···		1.00.4		
Name of Collector(s): Ri	ck D. I	Bivens,	Chester	J. Elli:	son, and	d Robin	Ayers

.

WR-0525

Cane Creek: Edge Surber sample

5 December 1986

Field # 025

Anderson Co., TN; Near railroad bridge near the mouth. Coordinates: 361003N - 840747W. Lake City, Tenn., # 137 NW Quad. Reach # 06010207-.

TAXA	NUMBER
COLEOPTERA: Elmidae/Dubiraphia larva	1
DIPTERA: Chironomidae Tipulidae/Limnophila	2 1
EPHEMEROPTERA: Ephemerellidae/Ephemerella Heptageniidae/Stenacron Stenonema Oligoneuriidae/Isonychia	1 1 5 1
OLIGOCHAETA:	2
PELECYPODA: Corbiculidae/Corbicula fluminea	3
TRICHOPTERA: Limnephilidae/Pycnopsyche	1
	18

Volumetric Displacement was 0.5 ml.

Cane Creek: Midstream Surber sample

5 December 1986

Field # 025

Anderson Co., TN; Near railroad bridge near the mouth. Coordinates: 361003N - 840747W. Lake City, Tenn., # 137 NW Quad. Reach # 06010207-.

TAXA .	NUMBER
DIPTERA: Chironomidae	3
EPHEMEROPTERA: Heptageniidae/Stenacron Stenonema Oligoneuriidae/Isonychia	2 16 1
	22

Volumetric Displacement was 0.25 ml.

Coal Creek

Two qualitative fishery surveys were conducted in December 1986:

- Location and Length Tributary to the Clinch River. Sample area 1 was 1.5 mi. upstream from the mouth and was sampled on 16 December 1986. The sample area was 200 ft. in length and averaged 35.3 ft. in width. Sample area 2 was located at the end of the county road, upstream of Briceville, where a jeep road crosses the stream, and was sampled on 17 December 1986. The sample area was 400 ft. in length and averaged 25 ft. in width. Both sites were in Anderson County. Lake City Quadrangle.
- Gear Type Both sites were sampled using backpack electrofishing equipment. Each area was sampled using a single shocker operating at 110 v. AC.
- Water Quality Data were taken from midstream with a 4041 Hydrolab.

 Area 1, on 16 December 1986: DO 11.4 ppm, pH 7.4,

 Temperature 47.3 F, Conductivity 240 micromhos/cm. Area
 2, on 17 December 1986: DO 11.5 ppm, pH 7.4, Temperature 46.4 F, Conductivity 240 micromhos/cm.
- Benthos Collection Benthic organisms were collected from two square-foot Surber samples at each site. Area 1 averaged 12 organisms, 0.3 ml. volumetric displacement, and represented 9 different taxa. Area 2 averaged 12 organisms, 0.1 mi. volumetric displacement, and represented 8 different taxa.

Fish Collected:

	Area 1			<u> Area 2</u>				
Species	No.	% by No.	Wt.	% by Wt.	No.	% by No.	Wt.	% by Wt.
Rainbow trout Brown trout	5 1	11.6		13.6	3	1.0	0.35	9.6
Rock bass Bluegill Redbreast sunfish Longear sunfish	1	2.3	t		1		0.1	•
Nongame Fish Forage Fish	17 19	39.5 44.2	6.8 0.6	77.3 6.8	22 273	7.3 91.0	1.4 1.75	38.4 47.9
Total	43		8.8		300		3.65	

Coal Creek has had a long history of degradation. Pollution from untreated sewage and domestic rubbish from Briceville and the general area above Lake City, heavy siltation and acid mine pollution from coal mining operations in the watershed, and channelization in and through Lake City have all occurred. In spite of this, surveys in the early and middle 1970s by TVA indicated a fairly diverse fish population present (TVA 1973; TVA unpublished data).

In an effort to update information for the agency, we surveyed two areas of Coal Creek, one downstream of Lake City near the mouth, and the other upstream of Briceville. Game fish from both sample sites included rainbow trout (Salmo gairdneri), brown trout (S. trutta), rock bass (Ambloplites rupestris), bluegill (Lepomis macrochirus), redbreast sunfish (L. auritus), and longear sunfish (L. megalotis). Rainbow trout, brown trout, and bluegill were collected only from the lower area while rock bass, redbreast sunfish, and longear sunfish were collected only from the upper site. Game fish were low in numbers from both areas and at the lower site, the total number of fish was very low. Also, the trout from the lower site were fish that had been stocked in the Clinch River. In all we collected a total of 22 fish species. Ten species from the downstream, and 15 from the upstream site. The upstream site not only had higher species diversity but also a greater number of fish overall. This would tend to indicate that the lower stream reaches are still being adversly affected by pollution.

Benthic macroinvertebrates from our samples were low in both total numbers and diversity. These included representatives of Ephemeridae and Heptageniidae mayflies, Hydropsychidae and Glossosomatidae caddisflies, and Taeniopterygidae stoneflies. The only mollusk collected was the Asian clam (Corbicula fluminea) from the lower site.

LAKE CITY QUADRANGLE TENNESSEE 7.5 MINUTE SERIES (TOPOGRAPHIC) 137-NW NORRIS LAKE ELEV 1020 36°15′ ⁴⁰15 680 000 FEET NORRISTDAM STATE/PARK ⁴⁰14 BM S 131 1331 NORRIS DAM 2.9 MI. KNOXVILLE 28 MI. Cumberland View Estates ongfield Cell TOS 53.1 Spring Lake City Athletic field COAL CREEK Sample Area 1 4012 Coal Ty tower wiley Cem 893 52X 4011 12'30" Clear Branch Ch TO TENNESSEE 61 KNOXVILLE 22 MI. LAKE CITY QUADRANGLE Tennessee - 137 NW 59

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

Α.	LO	CAT	ION

	Wat	tershead Clinch River Lat-Long 361300N - 840811W
	Sti	ceam Coal Creek Length of Sample 2001
		ea or Station Site # 1 Reach 06010207-27,0
	Cou	nty Anderson Date/Time 16 December 1986/1230
	Dat	a Collected By Rick D. Bivens and Chester J. Ellison
3.	PHY	SICAL CHARACTERISTICS
	1.	Average Width 35.3' Average Depth 1.3' Maximum Depth 3.5'
	ż.	Estimated Percent of Stream in Pools is 40 %.
	3.	Estimated Percent Pool Bottom is Mud 10 % Silt 30 % Sand 40 %
		Clay - % Gravel 5 % Rubble 5 % Boulders 5 %
		Bedrock 5 % Other - %
	4.	Estimated Percent Riffle Bottom is Mud - % Silt 20 % Sand 30 %
		Bedrock 10 % Other Rubble 40%
	5.	Abundance of Littoral Aquatic Plants is Numerous
		Average Scarce X
	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in 40 %
		of Stream, Average in 40 %, Poor in 20 %
	7.	Shade or Canopy Good over 40 % of Stream; Interferes little
		(degree) with any (type) of fishing.
{	3.	Flow (c.f.s.) 51.4 : Flow compared to Normal: Low Normal High X
9	9.	D.O. 11.4 ppm Temp. 47.3°F % Saturation 97
1.0).	Present Weather Partly cloudy and mild, air temp. 55°F
11	L.	Past Weather (last 24 hours) Partly cloudy and cool overnight.
12	2.	D.O. 11.4 pH 7.4 Temp. 47.3 Conductivity 240
13	3:	Comments: Sample location 1.5 mi. above the mouth. Heavy
		siltation; coal fines; trash dumping.

TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Clinch River	Lat-Long361300N 840811W
Body of Water Coal Creek	Date 16 December 1986
County or River Mile Anderson	Reach 06010207-27,0
Type of Sampling Electrofishing	Pool Elevation 823'
Gear Type Backpack Shocker	Time 1325-1400
200' sample length	

SPECIES Name	CODE	NUMBER	LENGTE	WI.	. *	*	*
Salmo gairdneri	353	1	8	0.2			
tt tt	11	2	9	0.4			
11 11	11	1	10	0.2			
11	11	1	11	0.4			
Salmo trutta	355	1	8	0.2			
Lepomis macrochirus	206	1	2	t			
Hypentelium nigricans	166	16	4-11	3.2			
Campostoma anomalum	25	11	2-6	0.5			
Cyprinus carpio	47	1	21	3.6			
Notropis chrysocephal	ıs 249	1	5	0.05			
Etheostoma blennioide	3 81	5	3	0.05	1		
Percina evides	310	1	3	t			
Cottus carolinae	40	1	4	t	i		
				İ			
				1			1
							1
				·			İ
							:
				i			1
	w]	
				:			1
							1

* Labe	ıl Pa	rame	ter Listed												
Field	Note	es:	Crayfish	were	pı	resent.	Tro	out	were	sto	cked	in	Clinch	River	· · · · · · · · · · · · · · · · · · ·
Name o	of Co	ollec	tor(s):	Rick	D.	Bivens	and	Ch€	ester	J.	Elli	son			

WR-0525

Coal Creek: Site # 1, Edge Surber sample

16 December 1986

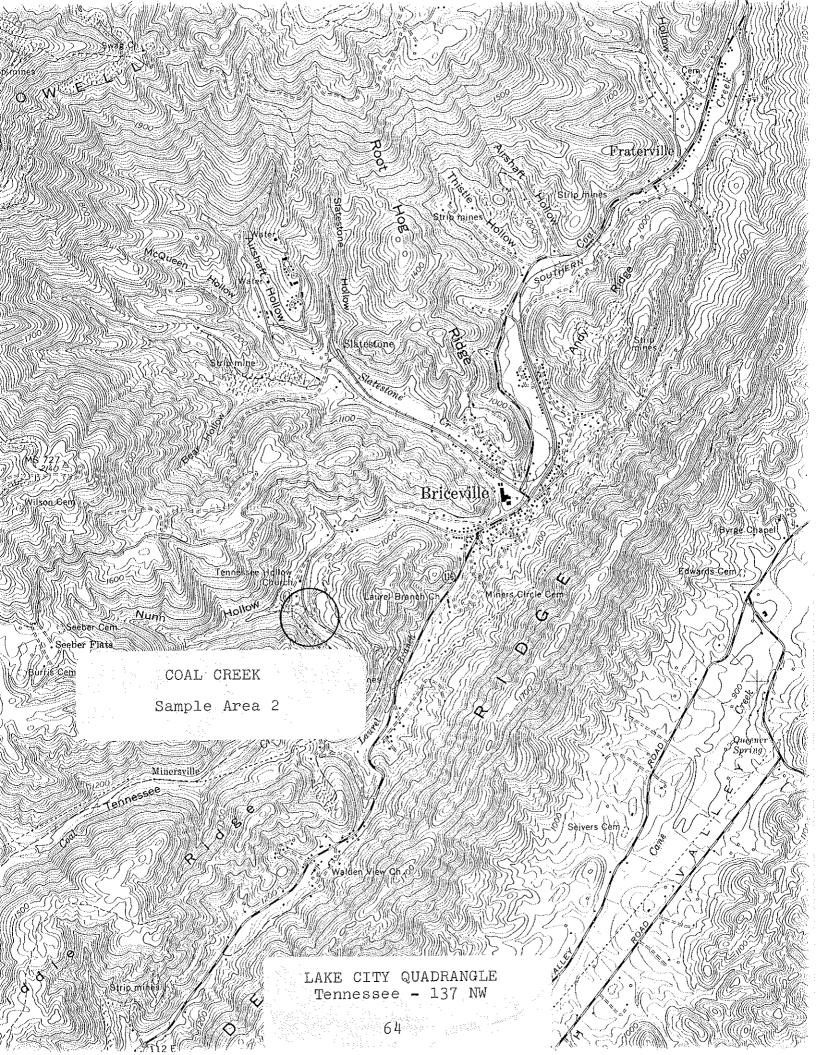
Field # 026

Anderson Co., TN; Approx. 1.5 mi. upstream of the mouth. Coordinates: 361300N - 840811W. Lake City, Tenn., # 137 NW Quad. Reach # 06010207-27,0.

TAXA	NUMBER
DIPTERA: Chironomidae	3
EPHEMEROPTERA: Heptageniidae/Stenonema	1
ISOPODA: Asellidae/Lirceus	4
ODONATA: Coenagrionidae/Argia	2
OLIGOCHAETA:	2
	12

Volumetric Displacement was 0.25 ml.

Coal Creek: Site # 1, Midstream Surber sample


16 December 1986

Field # 026

Anderson Co., TN; Approx. 1.5 mi. upstream of the mouth. Coordinates: 361300N - 840811W. Lake City, Tenn., # 137 NW Quad. Reach # 06010207-27,0.

TAXA	NUMBER
COLEOPTERA: Elmidae/Stenelmis larva	1
EPHEMEROPTERA: Ephemeridae/Ephemera	1
MEGALOPTERA: Corydalidae/Corydalus cornutus	1
OLIGOCHAETA:	6
PELECYPODA: Corbicula fluminea	2
	11

Volumetric Displacement was 0.35 ml.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

Α.	LO	CATION					
	Wa	tershead Clinch River	Lat-Long 361015N - 841154W				
	St	ream Coal Creek	Length of Sample 400'				
	Ar	ea or Station Site # 2	Reach 06010207-27,0				
	Coi	untyAnderson	Date/Time 17 December 1986/1030				
		ta Collected By Rick D. Bivens ar	-				
В.	PHY	YSICAL CHARACTERISTICS					
	1.	Average Width 25' Average D	Depth 0.8' Maximum Depth 4.4'				
•	2.	Estimated Percent of Stream in Pools					
	3.	Estimated Percent Pool Bottom is Muc	1 % Silt 20 % Sand 30 %				
		Clay - % Gravel 10 % Rubb	ole 10 % Boulders 10 %				
		Bedrock 20 % Other - %					
	4.	Estimated Percent Riffle Bottom is A	Mud _ % Silt 20 % Sand 30 %				
		Bedrock 20 % Other Rubble 3	30%				
	5.	Abundance of Littoral Aquatic Plants	s is Numerous				
		Average	Scarce X				
	6.	Cover Abundance (overhanging banks,	logs, roots, etc.) is Good in 20 %				
		of Stream, Average in 30	%, Poor in 50 %				
	7.	Shade or Canopy Good over 50	% of Stream; Interferes little				
		(degree) with any (t	ype) of fishing.				
	8.	Flow (c.f.s.) 15.2 : Flow compare	d to Normal: LowNormalHigh_X_				
	9.	D.O. 11.5 ppm Temp	. 46.4°F % Saturation 95				
1	0.	Present Weather Cloudy and overc	ast with light rain, air temp. 48°I				
1	1.	Past Weather (last 24 hours) <u>Part1</u>	y cloudy and mild.				
1	2.	D.O. <u>11.5</u> pH <u>7.4</u> Temp. <u>46.4</u> Condu	ctivity 240				
1	3:	Comments: Sample location at en-	d of county road where jeep road				
		crosses the stream, above Brice	eville. Pools and habitat some-				
		what lacking for fish. Lot of	rubbish along stream above Lake				
		City to Briceville. Coal fine:	s present, siltation lighter than				

lower stream section.

Watershed Clinch River	Lat-Long 361015N - 841154W
Body of Water Coal Creek	Date 17 December 1986
County or River Mile Anderson	Reach 06010207-27,0
Type of Sampling Electrofishing	Pool Elevation 950'
Gear Type Backpack Shocker	Time 1120-1220
400' sample length	

SPECIES Name	CODE	NUMBER	LENGTE	WI.	*	*	*
Ambloplites rupestris	13	1	6	0.15			
11 11	11	2	5	0,2	;		
Lepomis auritus	201	1	5	0.1			
Lepomis megalotis	208	1	4	0.05			
Hypentelium nigricans	166	22	2-9	1 1.4		_	
Campostoma anomalum	25	219	2-8	1.4			
Hybopsis amblops	155	12	2-3	0.05			
Notropis chrysocephal	นธ 249	11	2-5	0.25			
Notropis spilopterus	269	1	3	t			
Notropis stramineus	271	4	1-3	t			
Pimephales notatus	334	3	2-3	t			
Rhinichthys atratulus	351	3	3	t			
Semotilus atromaculat	us 360	4	2-4	0.05			
Etheostoma rufilineat	um 108	5	1-3	t			
Etheostoma simoterum	111	8	1-2	t			
Fundulus catenatus	137	3	2-4	i t			
`				1			: !
			<u> </u>	:			
				:			
							i
				ļ			
				1			
				i			

^{*} Label Parameter Listed

Field Notes: Local resident says that trout are caught here sometimes. He also says its a good rock bass stream. Siltation lighter here than lower.

Name of Collector(s): Rick D. Bivens and Chester J. Ellison

WR-C525

Coal Creek: Site # 2, Edge Surber sample

17 December 1986

Field # 027

Anderson Co., TN; Upstream of Briceville at end of county road. Coordinates: 361015N - 841154W. Lake City, Tenn., # 137 NW Quad. Reach # 06010207-27,0.

TAXA	NUMBER
DIPTERA: Athericidae/Atherix lantha Tipulidae/Antocha	1 2
EPHEMEROPTERA: Heptageniidae/Stenonema	4
PLECOPTERA: Taeniopterygidae/Taeniopteryx	8
TRICHOPTERA: Hydropsychidae/Cheumatopsyche	1
TURBELLARIA:	1
	17

Volumetric Displacement was 0.15 ml.

Coal Creek: Site # 2, Midstream Surber sample

17 December 1986

Field # 027

Anderson Co., TN; upstream of Briceville at end of county road. Coordinates: 361015N - 841154W. Lake City, Tenn., # 137 NW Quad. Reach # 06010207-27,0.

TAXA	NUMBER		
DIPTERA: Chironomidae			
PLECOPTERA: Taeniopterygidae/Taeniopteryx	Ц		
TRICHOPTERA: Glossosomatidae/Glossosoma	1		
	6		

Volumetric Displacement was 0.05 ml.

Powell River

Two qualitative fishery surveys were conducted in October 1986:

- Location and Length Sample area 1 was at Lonesome Valley Road access, Powell River mi. 52.0, and was sampled on 6 October 1986. The sample area was 300 ft. in length and averaged 126.8 ft. in width. Sample area 2 was at Buchanan Ford, Powell River mi. 99.3, and was sampled on 8 October 1986. The sample area was 400 ft. in length and averaged 138.5 ft. in width. Both sites were in Claiborne County. Area 1, Clouds Quadrangle. Area 2, Coleman Gap Quadrangle.
- Gear Type Both sites were sampled using both boat and backpack electrofishing equipment. A shocker boat was used where deeper water permitted and shallow riffle areas were sampled with either a backpack shocker alone (Area 2) or a backpack shocker in combination with a 10 ft. seine (Area 1).
- Water Quality Data were taken from midstream with a 4041

 Hydrolab. Area 1, on 6 October 1986: DO 10 ppm,

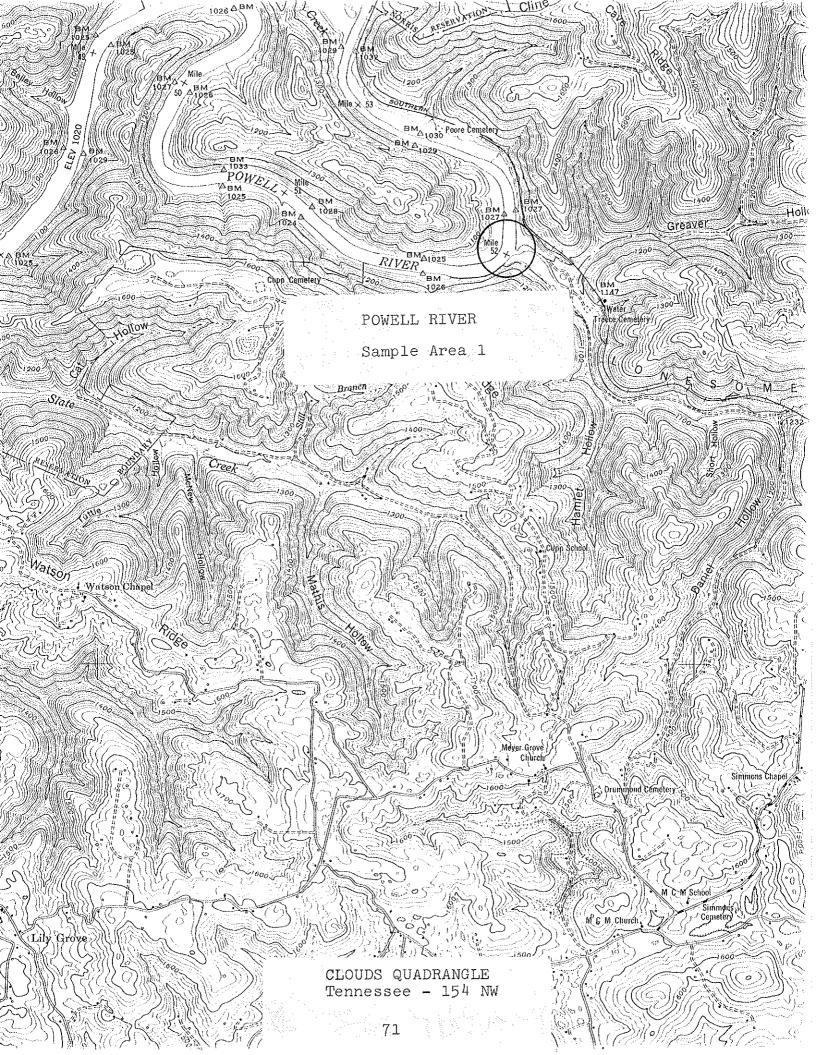
 pH 7.9, Temperature 70.7 F, Conductivity 293 micromhos/cm.

 Area 2, on 8 October 1986: DO 9.5 ppm, pH 7.8,

 Temperature 65.8 F, Conductivity 318 micromhos/cm.
- Benthos Collection Benthic organisms were collected from two square-foot Surber samples at each site. Area 1 averaged 49 organisms, 0.6 ml. volumetric displacement, and represented 17 different taxa. Area 2 averaged 215 organisms, 0.5 ml. volumetric displacement, and represented 14 different taxa.

Fish Collected:

11011 00110000.	<u>Area l</u>					Area 2			
Species	No.	% by No.	Wt.	% by Wt.	No.	% by No.	Wt.	% by Wt.	
Smallmouth bass Spotted bass Rock bass Bluegill Redbreast sunfish Longear sunfish	8 4 13 34 4	2.0 1.0 3.3 8.5 1.0		2.2 4.4 3.8 0.9 0.1	2 1 6	1.2	0.1 0.2 0.6	0.3 0.6 1.9	
Nongame Fish Forage Fish	40 296	10.0 74.2		79.9 8.7	36 453		29.0 1.65	91.1 5.2	
Total	399		34.3		509		31.85		


Comments:

Two areas of the Powell River were sampled primarily to update fishery data for the agency and collect stream information for TADS. One sample site was located just above Norris Reservoir while the other area was approximately 47 river miles upstream of the reservoir.

Game fish from both sites included smallmouth bass (Micropterus dolomieui), spotted bass (M. punctulatus), rock bass (Ambloplites rupestris), bluegill (Lepomis macrochirus), redbreast sunfish (L. auritus), and longear sunfish (L. megalotis). Smallmouth, spotted, and rock bass were collected from both sites while bluegill and redbreast sunfish were collected only from the downstream area and longear sunfish were collected only from the upper site. Numbers of game fish collected were low at both sites except for bluegill from the downstream site. Although our numbers were low, the Powell River is known to support a significant fishery for both smallmouth and rock bass. We collected a total of 43 fish species from both sites combined.

The Powell River has had a long history of pollution. In the early 1960s it was in an almost constant state of turbidity due to coal mining activities around the upper river in Virginia (TWRA unpublished information). In addition to siltation and coal fines, sewage from municipalities and private dwellings, acid mine drainage, and wildcat gravel dredging operations have also contributed to pollution problems of the Powell (Hylton 1984). Even though it has suffered significant pollution, the Powell River still supports several rare and endangered aquatic organisms and high priority should be given to protect it against further deterioration.

Benthic macroinvertebrates from our samples included Baetidae, Caenidae, Heptageniidae, Oligoneuriidae, Potamanthidae, and Tricorythidae mayflies, Hydropsychidae and Polycentropodidae caddisflies, elmid riffle beetles, and the perlid stoneflies Neoperla clymene and Phasganophora capitata. Asian clams (Corbicula fluminea) and river snails (Anculosa subglobosa and Pleurocera unciale) were also present.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

A. LOCATION

	Wa	tershead Powell River Lat-Long 362855N - 834048W
	St	ream Powell River Length of Sample 300'
	Are	ea or Station Site # 1 Reach 06010206-6,3
	Cou	inty Claiborne Date/Time 6 October 1986/1515
	Dat	a Collected By Rick D. Bivens, David Lane, and Chester J. Ellison
В.	PHY	SICAL CHARACTERISTICS
	1.	Average Width 126.8' Average Depth 2.1' Maximum Depth 4.4'
•	2.	Estimated Percent of Stream in Pools is 50 %.
	3.	Estimated Percent Pool Bottom is Mud 20 % Silt 30 % Sand 20 %
		Clay 15 % Gravel 5 % Rubble 5 % Boulders 5 %
		Bedrock - % Other - %
	4.	Estimated Percent Riffle Bottom is Mud 5 % Silt 10 % Sand 20 %
		Bedrock 5 % Other Rubble 60%
	5.	Abundance of Littoral Aquatic Plants is Numerous
		Average X Scarce
	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in 50 %
		of Stream, Average in 25 %, Poor in 25 %
	7.	Shade or Canopy Good over 30 % of Stream; Interferes little
		(degree) with any (type) of fishing.
	8.	Flow (c.f.s.) 276.9: Flow compared to Normal: LowNormal_X_High
	9.	D.O. 10.0 ppm Temp. 70.7°F % Saturation 110
]	LO.	Present Weather Cloudy and cool.
1	1.	Past Weather (last 24 hours) Partly cloudy turning cooler.
]	L2.	D.O. 10.0 pH 7.9 Temp. 70.7 Conductivity 293
1	.3:	Comments: Sample location at Powell River mi. 52.0. Curly leaf
		pond weed along with other pond weeds present. Coal fines make
		up a considerable amount of the substrate.

FISH FIELD DATA FORM

TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Powell River	Lat-Long 362855N - 834048W
Body of Water Powell River	Date 6 October 1986
County or River Mile Claiborne	Reach 06010206-6,3
Type of Sampling Electrofishing	Pool Elevation 1035'
	Time 1400-1500
shocking into 10' seine.	

300	sample l	ength		, , , , , , , , , , , , , , , , , , , ,		1	Ĭ	1
Name S	PECIES	CODE	NUMBER	LENGTE	WI.	*	*	*
Ambloplites	rupestris	13	5	6	0.75		<u> </u>	
11	tt l	1!	5	5	0.4			
T1	1!	11	2	4	0.15			-
11	11	††	1.	2	<u>t</u>			
Lepomis auri	tus	201	4	2-4	0.05		!	
Lepomis macr		206	1	5	0.1	1		
11	11	†1	1	4	0.05			
ř ř	1!	11	2	3	t			
!!	11	††	30	2	0.15			
Micropterus	dolomieui	218	1	4	<u>l</u> t		ļ	
11	!!	!!	3	5	0.15			
11	11	11	3	7	0.4		<u> </u>	
11	11	††	1	8	10.2		<u> </u>	<u> </u>
Micropterus	punctulat	us 219	1	14	1.5			
II	tt	11	2	l ₁	t			İ
††	11	II	1	3	i t			<u> </u>
Hypentelium	nigricans	166	T 7	5-15	14.2			
Dorosoma cep		48	5	11-12	12.7			
Moxostoma co		228	1	15	11.1			
Moxostoma di		229	18	5-17	15.6			!
Moxostoma erythrurum		230	2	4	0.1		<u> </u>	<u> </u>
Moxostoma					Į.	1		:
macrolepia	lotum	231	7	6-15	13.7		1	
		İ		1	!			<u> </u>
Continue	d on	next	page	İ	i			<u> </u>

* Labe	el Parameter Listed	
Field	Notes:	

Name of Collector(s): Rick D. Bivens, David Lane, and Chester J. Ellison

WR-C525

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Powell River	Lat-Long 362855N - 834048W
Body of Water Powell River	Date 6 October 1986
County or River Mile Claiborne	Reach 06010206-6,3
Type of Sampling Electrofishing	Pool Elevation 1035 t
Gear Type Boat shocking & backpack	Time 1400-1500
shocking into 10' seine.	

300' sample length							
SPECIES Name	CODE	NUMBER	LENGTH	WI.	*	*	*
Campostoma anomalum	25	46	2-6	1.4			
Hybopsis amblops	155	7	2-3	t	ĺ		
Hybopsis dissimilis	157	14	3-5	0.2			
Hybopsis insignis	160	1	3	t			
Notropis ariommus	238	5	3	l t			
Notropis chrysocephal	us 249	16	2-3	0.1	·		
Notropis coccogenis	248	1	3	t			
Notropis galacturus	253	27	1-3	0.1	.		
Notropis photogenis	259	11	3-5	0.1	a		
Notropis rubellus	260	1	2	t	····		
Notropis sp. cf.			Ì				
Notropis spectruncul	us 266	1	<u> </u>	t			
Notropis spilopterus	269	14	1-3	t		<u>'</u>	
Notropis whipplei	278	2	4	0.05			
Phenacobius uranops	330	6	3-4	0.05			
Pimephales notatus	334	79	2-3	0.3			<u> </u>
Etheostoma blennioide	s 81	14	3-5	0.2			-
Etheostoma rufilineat	um 108	13	2-3	0.1			
Etheostoma simoterum	111	6	2	l t			:
Etheostoma zonale	135	7	2	t			!
Percina aurantiaca	304	1	3	t			<u> </u>
Percina caprodes	306	16	3-6	0.4	! ! :		
Percina evides	310	2	2	t	<u> </u>		:
Cottus carolinae	40	2	1	t	1		!
Labidesthes sicculus	189	i 4	3	t	Ì		

* Label Parameter	Listed

t. T.G.T.O.	HOCE3+	

Name of Collector(s): Rick D. Bivens, David Lane, and Chester J. Ellison

WR-C525

Powell River: Site # 1, Edge Surber sample

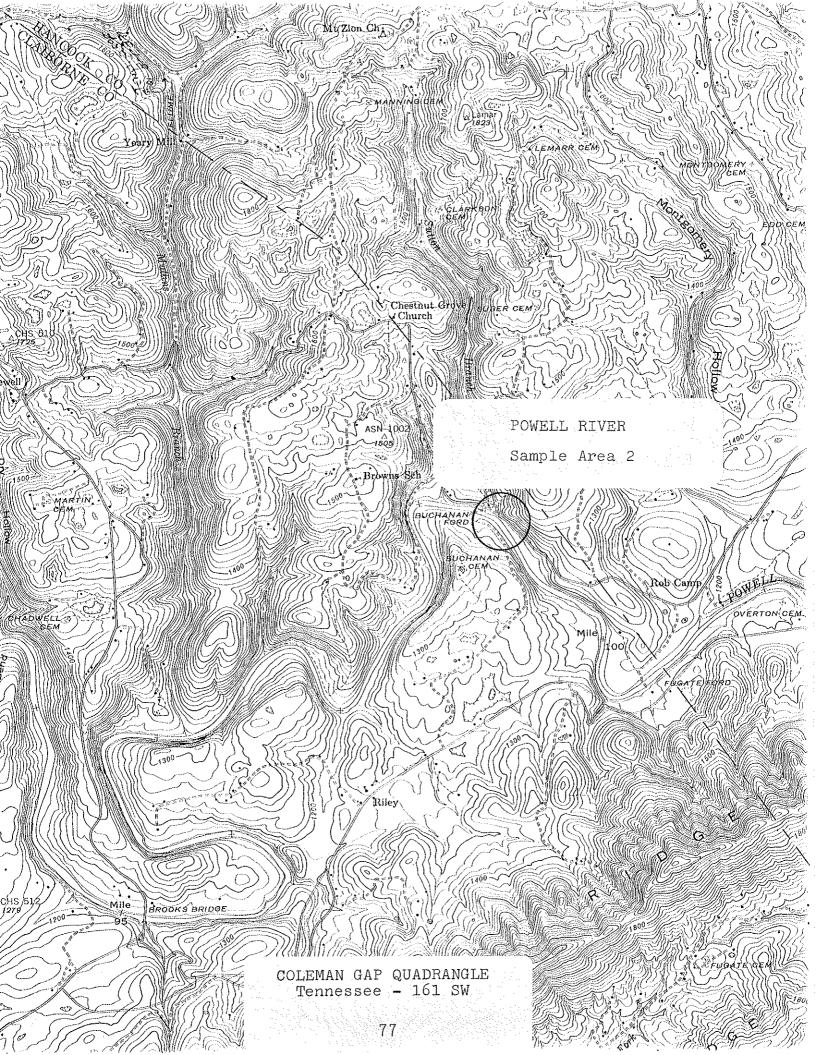
6 October 1986

Field # 015

Claiborne Co., TN; Lonesome Valley, Powell River mi. 52.0. Coordinates: 362855N - 834048W. Clouds, Tenn., # 154 NW Quad. Reach # 06010206-6,3.

TAXA	NUMBER
COLEOPTERA: Elmidae/Stenelmis larvae Stenelmis adults	5 2
DIPTERA: Chironomidae Tipulidae/Antocha	4 3
EPHEMEROPTERA: Baetidae/Baetis Caenidae/Caenis Heptageniidae/Heptagenia Stenonema Potamanthidae/Potomanthus	2 1 1 11 1
LEPIDOPTERA: Pyralidae/Petrophila	23
MEGALOPTERA: Corydalidae/Corydalus cornutus	3
PLECOPTERA: Perlidae/Neoperla clymene	1
TRICHOPTERA: Hydropsychidae/Cheumatopsyche Hydropsyche Polycentropodidae/Neureclipsis crepuscularis	2 7 1
	67

Volumetric Displacement was 0.75 ml.


Powell River: Site # 1, Midstream Surber sample

6 October 1986 Field # 015

Claiborne Co., TN; Lonesome Valley, Powell River mi. 52.0. Coordinates: 362855N - 834048W. Clouds, Tenn., # 154 NW Quad. Reach # 06010206-6,3.

TAXA	NUMBER
COLEOPTERA: Elmidae/Stenelmis larvae Stenelmis adult	2 1
DIPTERA: Chironomidae	1
EPHEMEROPTERA: Caenidae/Caenis Heptageniidae/Stenonema Tricorythidae/Tricorythodes	1 8 1
GASTROPODA: Pleuroceridae/Pleurocera unciale	1
LEPIDOPTERA: Pyralidae/Petrophila	11
MEGALOPTERA: Corydalidae/Corydalus cornutus	2
PELECYPODA: Corbiculidae/Corbicula fluminea	1
TRICHOPTERA: Hydropsychidae/Hydropsyche	3
	32

Volumetric Displacement was 0.5 ml.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSTOCHEMICAL STREAM SURVEY FORM

		PHYSIOCHEMICAL S	TREAM SURVEY FORM
Α.	LO	CATION	
	Wat	tershead Powell River	Lat-Long 363330N - 832522W
		ream Powell River	
		ea or Station Site # 2	
		unty Claiborne	
		a Collected By Rick D. Bivens a	
3.	PHY	SICAL CHARACTERISTICS	4
	1.	Average Width 138.5' Average 1	Depth 2.4' Maximum Depth 6.7'
	ż.	Estimated Percent of Stream in Pools	·
	3.	Estimated Percent Pool Bottom is Muc	d <u>30 % Silt 30 % Sand 10 </u>
		Clay 5 % Gravel 5 % Rub	ble <u>10</u> % Boulders <u>5</u> %
		Bedrock 5 % Other - %	
	4.		Mud5 % Siltl0 % Sand20 %
		Bedrock - % Other Rubble 6	55%
	5.	Abundance of Littoral Aquatic Plants	
		Average X	Scarce
	6.		logs, roots, etc.) is Good in 40
		of Stream, Average in 40	%, Poor in <u>20</u> %
	7.	Shade or Canopy Good over 40	_% of Stream; Interferes <u>little</u>
		(degree) withany(t	type) of fishing.
	8.	Flow (c.f.s.) 212.7 : Flow compare	ed to Normal: Low Normal X High
	9.	D.O. 9.5 ppm Temp	. 65.8°F % Saturation 100
1	0.		
1	1.	Past Weather (last 24 hours) Clear	I.

was somewhat lacking in this particular sample area.

13: Comments: Sample location at Buchanan Ford, Powell River mi. 99.3.

Lots of silt and coal fines in stream. Habitat for game fish

12. D.O. 9.5 pH 7.8 Temp. 65.8 Conductivity 318

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Powell River	Lat-Long 363330N - 832522W
Body of Water Powell River	Date 8 October 1986
County or River Mile Claiborne	Reach 06010206-9,1
Type of Sampling Electrofishing	Pool Elevation 1145'
Gear Type Boat shocking & backpack shocking on riffle areas.	Time 1300-1500

SPECIES Name	CODE	NUMBER	LENGTH	wr.	*	*	*
Ambloplites rupestris		3	6	0.4			
11 11	††	2	5	0.15			
11 1!	11	1	3	0.05			
Lepomis megalotis	208	1	6	0.1			
II II	11	1	5	0.1		 	
11 11	11	1.	3	0.05			
!! !!	11	8	2	0.05			
Micropterus dolomieui	218	1	5	0.05			
tt ti	l1	1	4	0.05			
Micropterus punctulat	us 219	1	8	0.2			
Hypentelium nigricans	166	6	3-13	2.1			
Dorosoma cepedianum	48	6	11-13	3.9			
Lepisosteus osseus	198	2	13-21	0.9			
Moxostoma carinatum	228	ζţ	17-26	11.8			
Moxostoma duquesnei	229	11	3-15	5.65			
Moxostoma erythrurum	230	3	9-14	2.4			
Moxostoma					,		
macrolepidotum	231	4	3-15	2.25			
Campostoma anomalum	25	25	2-4	0.2			
lyhopsis amblops	155	89	2-3	0.3			
lybopsis dissimilis	157	9	3-4	0.1			
locomis micropogon	234	3	3-6	0.15			
Continued on	next	page			:		

· Lave.	r rarameter	PTOCE	+							
Field	Notes:									
Name o	f Collector	(s):	Rick	D,	Bivens	and	Chester	J.	Ellison	

WR-0525

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed	Powell River	Lat-Long 363330N - 832522W
Body of Water	Powell River	Date 8 October 1986
	yar Mile Claiborne	Reach 06010206-9,1
	ing Electrofishing	Pool Elevation 1145'
• •	at shocking & backpack ocking on riffle areas.	Time 1300-1500
	ocking on riffle areas.	

SPECIES Name	CODE	NUMBER	LENGTH	wr.	*	*	*
Notropis ariommus	238	20	2-4	0.1			
Notropis chrysocepha	lus 249	42	1-6	0.25		<u> </u>	
Notropis coccogenis	248	3	2-4	t			
Notropis galacturus	253	7	1-5	0.05			
Notropis leuciodus	255	11	2-3	t			
Notropis photogenis	259	2	3	t		ļ	
Notropis rubellus	260	4	1-2	t		1	
Notropis sp. cf.				<u> </u>			
Notropis spectruncu	lus 266	12	1-2	t			
Notropis spilopterus	269	10	1-3	t			
Notropis telescopus	272	35	2	0.1			·
Notropis volucellus	277	59	1-2	0.1		1	·
Phenacobius uranops	330	11	3	t			
Pimephales notatus	334	54	1-3	0.1			
Etheostoma blennioid	s 81	8	2-4	0.1			<u> </u>
Etheostoma jessiae	96]	2	t			
Etheostoma rufilinea	um 108	23	1-2	t			1
Etheostoma simoterum	111	2	2	t			
Etheostoma zonale	135	11	2	t			
Percina caprodes	306	3	3-5	0.1			
Percina evides	310	13	2-3	t			<u> </u>
Percina sciera	317	1	3	t		:	:
Cottus carolinae	40	5	2-3	t			
		!	i			1	<u>.</u> !

* La	el	Parameter	Liste	1								
Field	l No	tes:									 <u></u>	
Name	of	Collector	(s):	Rick	D.	Bivens	and	Chester	J,	Ellison	 	

WR-0525

Powell River: Site # 2, Edge Surber sample

8 October 1986

Field # 016

Claiborne Co., TN; Buchanan Ford, Powell River mile 99.3. Coordinates: 363330N - 832522W. Coleman Gap, Tenn., # 161 SW Quad. Reach # 06010206-9,1

TAXA	NUMBER
COLEOPTERA: Elmidae/Stenelmis larva Stenelmis adults	1 8
DIPTERA: Chirnonmidae	1
EPHEMEROPTERA: Heptageniidae/Stenonema Oligoneuriidae/Isonychia	5 16
GASTROPODA: Pleuroceridae/Anculosa subglobosa Pleurocera unciale	158 2
MEGALOPTERA: Corydalidae/Corydalus cornutus	1
PELECYPODA: Corbiculidae/Corbicula fluminea	7
TRICHOPTERA: Hydropsychidae/Cheumatopsyche	1
	200

Volumetric Displacement was 0.5 ml.

Powell River: Site # 2, Midstream Surber sample

Field # 016 8 October 1986

Claiborne Co., TN; Buchanan Ford, Powell River mile 99.3. Coordinates: 363330N - 832522W. Coleman Gap, Tenn., # 161 SW Quad. Reach # 06010206-9,1.

TAXA	NUMBER
COLEOPTERA: Elmidae/Stenelmis larva Stenelmis adults	1 3
DIPTERA: Tipulidae/Antocha	1
EPHEMEROPTERA: Baetidae/Baetis Heptageniidae/Stenacron Stenonema Oligoneuriidae/Isonychia	1 2 2 7
GASTROPODA: Pleuroceridae/Anculosa subglobosa	178
MEGALOPTERA: Corydalidae/Corydalus cornutus	1
ODONATA: Coenagrionidae	1
PELECYPODA: Corbiculidae/Corbicula fluminea	26
PLECOPTERA: Perlidae/Phasganophora capitata	2
TRICHOPTERA: Hydropsychidae/Cheumatopsyche	6
	230

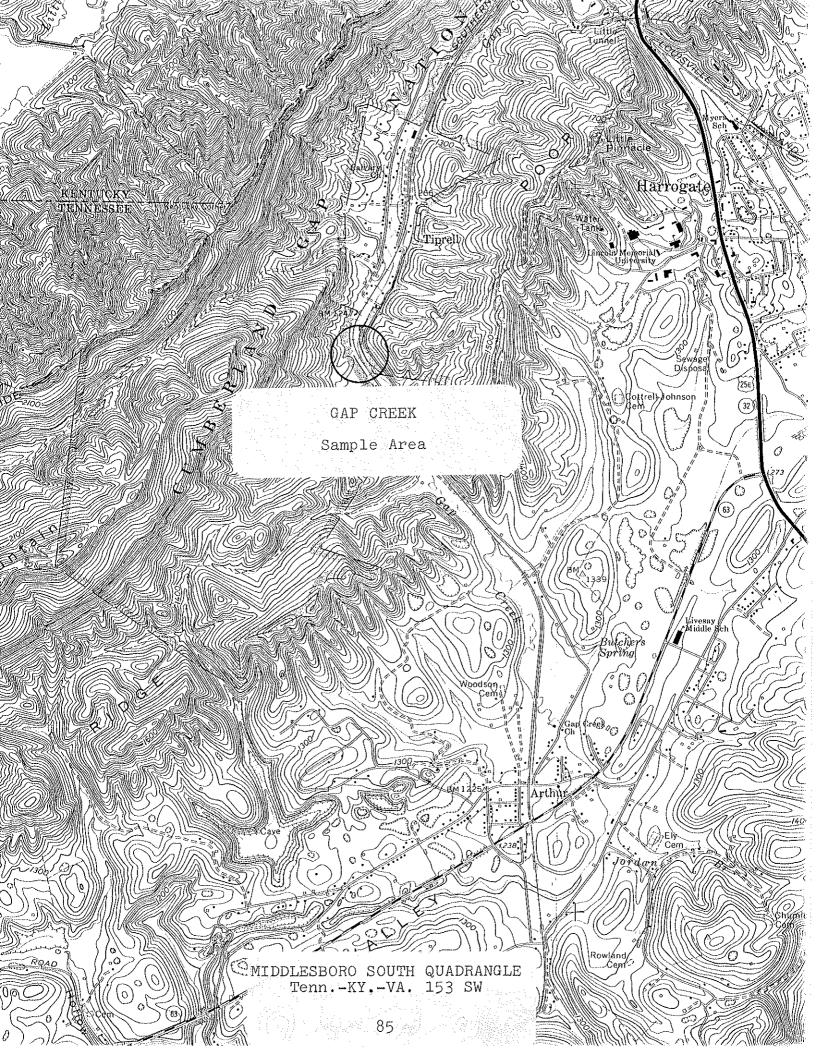
Volumetric Displacement was 0.5 ml.

Gap Creek

- One qualitative fishery survey was conducted in August 1987:
- Location and Length Tributary to the Powell River. The sample area was located about 0.2 mi. downstream from Tiprell and was sampled on 7 August 1987. It was 300 ft. in length and averaged 11.6 ft. in width. The site was in Claiborne County. Middlesboro South Quadrangle.
- Gear Type The site was sampled using backpack electrofishing equipment. Two shockers, operating side by side at 110 v. AC, were used.
- Water Quality Data were taken from midstream with a Model 58 YSI meter and a Cole Parmer Pocket pH meter. On 7 August 1987: DO 6.7 ppm, pH 8.2, Temperature 70.5 F.
- Benthos Collection Benthic organisms were collected from two square-foot Surber samples at the site. The samples averaged 77 organisms, 1.4 ml. volumetric displacement, and represented 14 different taxa.

Fish Collected:

Species	No.	% by No.	Wt.	% by Wt.
Rock bass	36	6.9	7.2	43.6
Nongame Fish Forage Fish	13 474	2.5 90.6	4.1 5.2	24.8 31.5
Total	523		16.5	


Comments - This stream was surveyed primarily to assess its potential for trout, to develop a fish species diversity list, and collect stream information for TADS. At the site sampled, the water was near the upper limit of temperature preferred by trout. Also the stream is fairly silty and sporatic trash dumping occurs along the stream course. Municiple wastes from the town of Cumberland Gap and pollutants from septic drain fields around Tiprell are likely to be impacting this stream to some extent also.

Rock bass (Ambloplites rupestris) were the only game fish collected and the stream appears to support a good population.

Almost 70% of the rock bass collected were greater than 6 in. and one was in the 10 in. class. A total of 10 fish species was collected, most of which are species components of streams that exhibit typical non-point-source pollution.

Benthic macroinvertebrates from our samples included representatives of Ephemeridae and Heptageniidae mayflies, Hydropsychidae and Limnephilidae caddisflies, and Elmidae and Psephenidae beetles. River snails (Goniobasis simplex and Pleurocera unciale) were also present.

In September, 1987, approximately 500 Owhi strain brook trout (Salvelinus fontinalis) were stocked in upper Gap Creek. The fish averaged about 7 in. and were stocked from the culvert at the railroad crossing in the town of Cumberland Gap downstream to the Cumberland Gap National Historical Park boundary. This upstream section appeared to be less impacted by pollution and water temperatures varied from 59 F at the culvert to 61 F at the park boundary. A follow-up check should be made to document the outcome of this stocking. If the Owhi strain survives, possibly the native strain brook trout could be transplanted in upper Gap Creek to help expand the range of the native trout.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

Α.	LO	CAT	TO	Ν
	\sim			

	Wa	tershed Powell River . Lat-Long 363427N - 834055W
	St	ream Gap Creek Length of Sample 300'
	ea or Station Below Tiprell Reach 06010206-	
	Çot	inty Claiborne Date/Time 7 August 1987/1000
	Dat	ta Collected By Rick D. Bivens and Chester J. Ellison
В.	PHY	SICAL CHARACTERISTICS
	1.	Average Width 11.6' Average Depth 0.3' Maximum Depth 1.7'
	2.	Estimated Percent of Stream in Pools is 40 %
	3.	Estimated Percent Pool Bottom is Mud 5 % Silt 20 % Sand 20 %
		Clay 5 % Gravel 10 % Rubble 30 % Boulders 10 %
		Bedrock - % Other - %
	4.	Estimated Percent Riffle Bottom is Mud 5 % Silt 20 % Sand 20 %
		Bedrock - % Other Rubble 30% Gravel 15% Boulders 10%
	5.	Abundance of Littoral Aquatic Plants is Numerous
		Average Scarce X
	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in 60 %
		of stream, Average in 20 %, Poor in 20 %.
	7.	Shade or Canopy Good over 90 % of Stream.
	8.	Flow (c.f.s.) 4,5 : Flow compared to Normal: Low X Normal High
*	9.	D.O. 6.7 ppm Temp. 70.5°F % Saturation 76.5
	10.	Present Weather Warm and overcast; air temp 75°F.
	11.	Past Weather (last 24 hours) Hot with thunderstorms.
*	12.	D.O. <u>6.7</u> pH <u>8.2</u> Temp. <u>70.5</u> Conductivity <u>-</u>
	13.	Comments: Sample location just below Tiprell (c.a. 0.2 mi.).
		* Taken with YSI meter. ** Taken with pocket pH meter. The
		stream is fairly silty and trash dumping occurs along the stream
		course.

FISH FIELD DATA FORM

TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Powell Rive	er		Lat-Long 363427N - 834055W						
Body of Water Gap Creel	K.	,	Date7_/	August 19	87	*			
County or River Mile Clan	iborne		Reach 06010206-						
Type of Sampling Electro	ofishin	g	Pool Eleva	ation 122	0 1				
Gear Type Two backpack side @ 110 v.	shocker AC.	s <u>sid</u> e	Time 10	45-1130					
SPECIES Name	CODE	NUMBER	LENGTH	WT.	*	*	*		
Ambloplites rupestris	1.3	1.	2	t					
11	11	5	3	0.1					
n n	11	2	4	0,1					
п	11	3	5	0.25			ļ		
11 11	tt	9	6	1.15					
n n	11	7	7	1.75					
11	t t	5	8	1.8					
11 11	11	33	9	1.45					
11 11	řt .	1	10	0.6					
Hypentelium nigricans	166	13	7-13	4.1					
Campostoma anomalum	25	59	1-5	0.8					
Hybopsis amblops	155	9	1-3	t					
Notropis chrysocephali	s 249	81	1-7	1.8					
Pimephales notatus	60	1	3	t					
Rhinichthys atratulus	351	243	1-4	1.3					
Semotilus atromaculati		22	1-7	0.4					
Etheostoma simoterum	111	9	1-2	t					
Cottus carolinae	40	50	2-5	0.9					
* Label Parameter Listed									
Field Notes: Sample ler	ngth 300) 1							
·····							····		
Name of Collector(s): Ric	ek D. B	ivens,	Chester 2	J, Elliso	n & Rio	ck Sand	ifer		

WR-0525

Gap Creek: Edge Surber sample

7 August 1987

Field # 057

Claiborne Co., TN; About 0.2 mi. downstream from Tiprell. Coordinates: 363427N - 834055W. Middlesboro South, Tenn.-KY.-VA., # 153 SW Quad. Reach # 06010206-.

TAXA	NUMBER
COLEOPTERA: Elmidae/Optioservus larvae Stenelmis larvae adult Psephenidae/Psephenus herricki	10 5 1 8
EPHEMEROPTERA: Heptageniidae/Heptagenia Stenacron Stenonema	5 6 2
GASTROPODA: Pleuroceridae/Goniobasis simplex unciale	14 12
ISOPODA: Asellidae/ <u>Lirceus</u>	1
MEGALOPTERA: Corydalidae/Nigronia serricornis	5
TRICHOPTERA: Limnephilidae/Neophylax	20
	89

Volumetric Displacement was 1.75 ml.

Gap Creek: Midstream Surber sample

7 August 1987

Field # 057

Claiborne Co., TN; About 0.2 mi. downstream from Tiprell. Coordinates: 363427N - 834055W. Middlesboro South, Tenn.-KY.-VA., # 153 SW Quad. Reach # 06010206-.

TAXA	NUMBER
COLEOPTERA: Elmidae/Stenelmis adult Psephenidae/Psephenus herricki	1 5
EPHEMEROPTERA: Ephemeridae/Ephemera Heptageniidae/Heptagenia Stenacron Stenonema	1 1 8 4
GASTROPODA: Pleuroceridae/Goniobasis simplex unciale	3 2
MEGALOPTERA: Corydalidae/Nigronia serricornis	2
ODONATA: Gomphidae (early instar)	1
TRICHOPTERA: Hydropsychidae/Cheumatopsyche Limnephilidae/Neophylax	2 35
	65

Volumetric Displacement was 1.0 ml.

Station Creek

One qualitative fishery survey was conducted in August 1987:

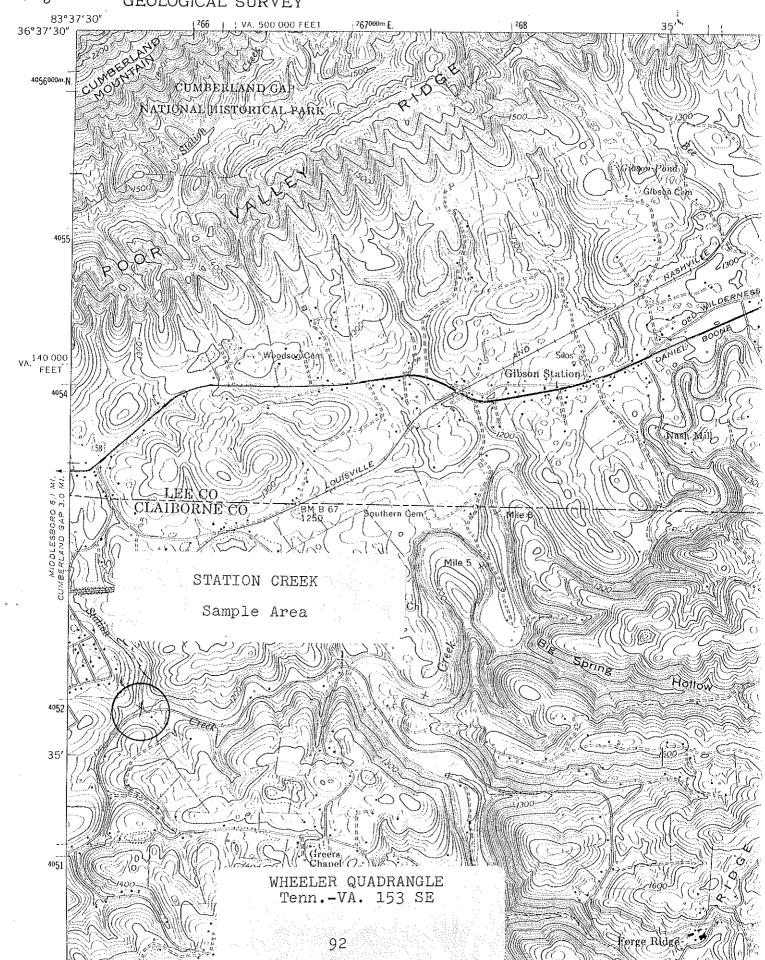
- Location and Length Tributary to Indian Creek (Powell River tributary). The sample area was located approximately 0.8 mi. upstream of the mouth, along Highway 63 where the road turns away from the stream, and was sampled on 7 August 1987. It was 300 ft. in length and averaged 28.1 ft. in width. The site was in Claiborne County. Wheeler Quadrangle.
- Gear Type The site was sampled using backpack electrofishing equipment. Two shockers, operating side by side at 110 v. AC, were used.
- Water Quality Data were taken from midstream with a Model 58 YSI meter and a Cole Parmer Pocket pH meter. On 7 August 1987: DO 14.7 ppm, pH 8.8, Temperature 68.9 F.
- Benthos Collection Benthic organisms were collected from two square-foot Surber samples at the site. The samples averaged 85 organisms, 0.9 ml. volumetric displacement, and represented 21 different taxa.

Fish Collected:

Species	No.	% by No.	Wt.	% by Wt.
Rainbow trout Smallmouth bass Rock bass Bluegill	2 1 27 1	0.2 0.1 2.3 0.1	t t 3.85 0.15	17.2 0.7
Nongame Fish Forage Fish	18 1112	1.6 95.8	1.45 16.98	6.5 75.7
Total	1161		22.43	

<u>for trout</u>, to develop a fish species diversity list, and collect stream information for TADS.

Rock bass (Ambloplites rupestris) were the primary game fish present. One smallmouth bass (Micropterus dolomieui) and l bluegill (Lepomis macrochirus) were also collected. A total of 20 species was collected from the sample area and of the


forage species, the central stoneroller ($\it Campostoma~anomalum$) represented almost 50% of the total number and about 80% of the total weight collected.

It is interesting to note the occurrence of the rainbow darter (*Etheostoma caeruleum*) and the northern studfish (*Fundulus catenatus*) in this stream. The rainbow darter is not very common in east Tennessee, its distribution is sporatic in the Ridge and Valley and above Knoxville is known from only a few localities in the Clinch/Powell and upper Holston river systems (Etnier and Starnes 1980). The northern studfish also occurs sporadically in Ridge and Valley streams.

Benthic macroinvertebrates from our samples included representatives of Baetidae, Heptageniidae, and Oligoneuriidae mayflies, Glossosomatidae, Hydropsychidae, Hydroptilidae, Limnephilidae and Philopotamidae caddisflies, and Elmidae and Psephenidae beetles. River snails (Goniobasis simplex and Pleurocera unciale) were abundant.

The stream appeared to have only very light siltation pollution and riffle and fine gravel substrate areas were very clean. Lots of moss occurred on the rocks and water cress was very abundant. The stream appears capable of supporting trout and two rainbow trout (Salmo gairdneri) from a stocking of about 200 fish in June of 1987 were recovered. The rainbow trout were 1.5 in. when stocked and the ones we collected had about doubled in length in the two month period. Due to water temperature approaching 70 F in August and the large number of stoneroller minnows available for forage, the stream appeared more suitable for brown trout (S. trutta). Therefore, approximately 500 brown trout averaging about 7 in. were stocked on 22 September 1987.

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

Α.	LO	CATION
	Wa	tershed Powell River Lat-Long 363509N - 833712W
	St	ream Station Creek Length of Sample 300'
	Ar	ea or Station Along Hwy. #63 Reach 06010206-
		inty Claiborne Date/Time 7 August 1987/1345
	Dat	ta Collected By Rick D. Bivens and Chester J. Ellison
В.	PHY	YSICAL CHARACTERISTICS
	1.	Average Width 28.1' Average Depth 0.7' Maximum Depth 3' est.
	2.	Estimated Percent of Stream in Pools is 40 %
	3.	Estimated Percent Pool Bottom is Mud 5 % Silt 20 % Sand 20 %
		Clay - % Gravel 10 % Rubble 35 % Boulders 5 %
		Bedrock 5 % Other _ %
	4.	Estimated Percent Riffle Bottom is Mud _ % Silt 20 % Sand 20
		Bedrock 10 % Other Grayel 10% Rubble 30% Boulders 10%
	5.	Abundance of Littoral Aquatic Plants is Numerous X
		Average Scarce
	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in 50 %
		of stream, Average in 25 %, Poor in 25 %.
	7.	Shade or Canopy Good over% of Stream.
	8.	Flow (c.f.s.) 11.0 : Flow compared to Normal: Low X Normal High
¥	9.	D.O. 14.7 ppm Temp. 68.9°F % Saturation 165.4
	10.	Present Weather Partly cloudy, hot, and humid; air temp 80°F.
	11.	Past Weather (last 24 hours) Hot and humid, some thunderstorms.
¥	12.	D.O. <u>14.7</u> pH <u>8.8</u> Temp. <u>68.9</u> Conductivity
	13.	Comments: Sample location approximately 0.8 mi. above the mouth
		along hwy. 63, where stream turns away from the road. * Taken
		with YSI meter. ** Taken with pocket pH meter. Lots of moss and

water cress present. Riffles and gravel substrate areas very clean.

FISH FIELD DATA FORM

TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Powell River	Lat-Long 363509N - 833712W
Body of Water Station Creek .	Date 7 August 1987
County or River Mile Claiborne	Reach 06010206-
Type of Sampling Electrofishing	Pool Elevation 1160'
Gear Type Two backpack shockers side by side @ 110v. AC.	Time 1445-1545
CDECIEC	

by side @ 110	v · r.v ·	<u>, </u>	T			<u> </u>	<u> </u>
SPECIES Name	CODE	NUMBER	LENGTH	WT.	*	*	*
Salmo gairdneri	353	5	3	t			
Ambloplites rupestris	1.3	3	8	1.1			
п	11	Ц	7	0.95			
н	11	9	6	1,35			
n n	11	4	5	0.3			
n n	†1	14	3	0.1			
11 11	f†	3	2	0.05			
Micropterus dolomieui	218	1	3	t			
Lepomis macrochirus	206	1	5	0.15			
Catostomus commersoni	32	6	4-8	0.65			
Hypentelium nigricans	166	12	2-9	0.8			
Campostoma anomalum	25	527	1-7	14.65			
Hybopsis amblops	155	5	3	t'!			
Nocomis micropogon	234].	2	t			
Notropis coccogenis	248	36	1-4	0.1			
Notropis chrysocephali	ıs 249	37	1-5	0.4			
Notropis spilopterus	269]	2	t			
Notropis telescopus	272	22	2-3	0,05			
Rhinichthys atratulus	351	373	1-4	1.4			
Semotilus atromaculati	ıs 360	1	1	t			
Etheostoma blennioides	81	1	4	t			
Etheostoma caeruleum	84	6	1-2	t			
Etheostoma simoterum	111	52	1-2	0.1			
Cottus carolinae	40	49	1-4	0.28			
Fundulus catenatus	137	1	3	t			

^{*} Label Parameter Listed

Field Notes: The rainbow trout were stocked on 3 June 1987. Approximately 200, 1.5 in. rainbows and 50, 4.0 in. browns were stocked.

Name of Collector(s): Rick D. Bivens, Chester J. Ellison & Rick Sandifer

WR-0525

Station Creek: Edge Surber sample

7 August 1987

Field # 058

Claiborne Co., TN; About 0.8 mi. upstream of the mouth. Coordinates: 363509N - 833712W. Wheeler, Tenn.-VA., # 153 SE Quad. Reach # 06010206-.

TAXA	NUMBER
COLEOPTERA: Elmidae/Optioservus larvae Promoresia tardella larvae Stenelmis larvae adults Psephenidae/Psephenus herricki	6 2 8 3 8
DIPTERA: Chironomidae Empididae	1 1
EPHEMEROPTERA: Baetidae/Baetis Heptageniidae/Stenacron Oligoneuriidae/Isonychia	1 1 1
GASTROPODA: Pleuroceridae/Goniobasis simplex unciale	22 15
HETEROPTERA: Veliidae/Microvelia	1
ISOPODA: Asellidae/Lirceus	11
MEGALOPTERA: Corydalidae/Nigronia serricornis	1
TRICHOPTERA: Glossosomatidae/Glossosoma Hydropsychidae/Cheumatopsyche Hydropsyche betteni/depravata Limnephilidae/Neophylax Philopotamidae/Chimarra	3 2 3 5 5
	100

Volumetric Displacement was 1.0 ml.

Station Creek: Midstream Surber sample

7 August 1987

Field # 058

Claiborne Co., TN; About 0.8 mi. upstream of the mouth. Coordinates: 363509N - 833712W. Wheeler, Tenn.-VA., # 153 SE Quad. Reach # 06010206-.

TAXA	NUMBER
COLEOPTERA: Elmidae/Optioservus larvae Promoresia tardella larvae Stenelmis larvae adult Pspehenidae/Psephenus herricki	4 8 3 1 6
DIPTERA: Chironomidae	2
GASTROPODA: Pleuroceridae/Goniobasis simplex unciale	4 14
ISOPODA: Asellidae/Lirceus	5
ODONATA: Aeshnidae/Boyeria	1
TRICHOPTERA: Hydropsychidae/early instars Hydropsyché betteni/depravata Hydroptilidae/Hydroptila Limnephilidae/Neophylax	3 7 4 8
	70

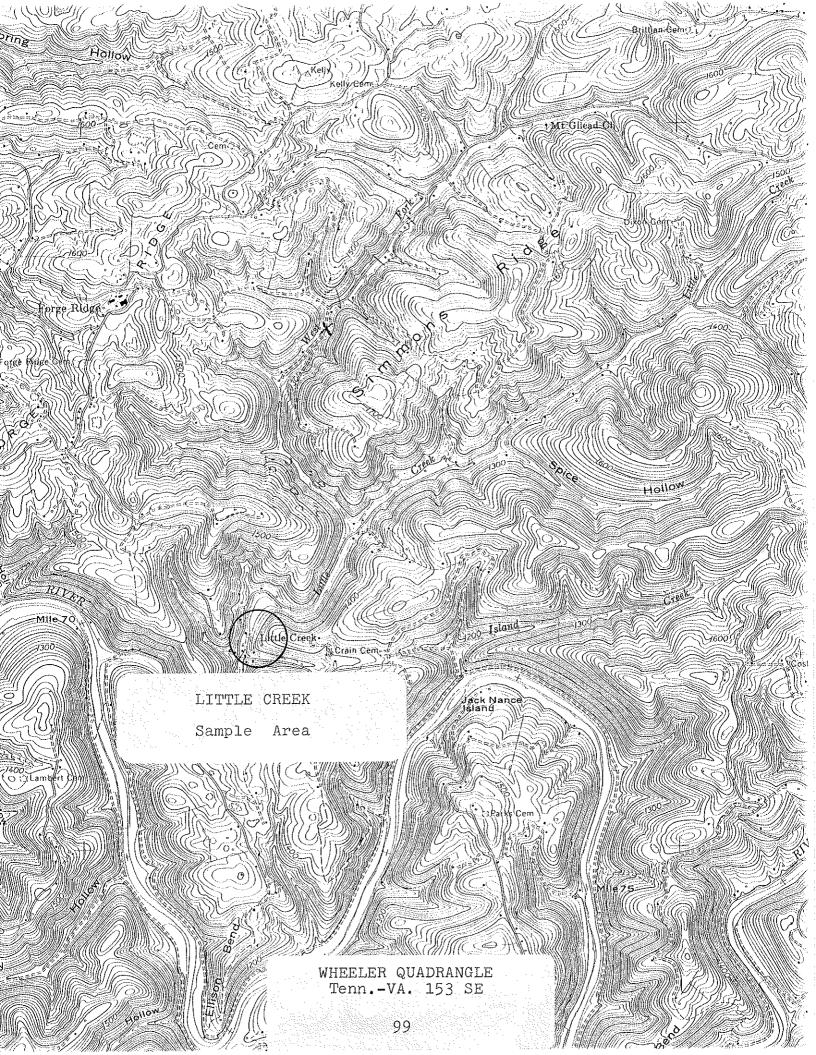
Volumetric Displacement was 0.75 ml.

Little Creek

One qualitative fishery survey was conducted in September 1987:

- Location and Length Tributary to the Powell River. The sample area was located at Little Creek Church and was sampled on 18 September 1987. It was 300 ft. in length and averaged 14.3 ft. in width. The site was in Claiborne County. Wheeler Quadrangle.
- Gear Type The site was sampled using backpack electrofishing equipment. One shocker, operating at 350 v. AC, was used.
- Water Quality Data were taken from midstream with a Model 58 YSI meter and a Cole Parmer Pocket pH meter. On 18 September 1987: DO 10.2 ppm, pH 8.2, Temperature 62.6 F.
- Benthos Collection Benthic organisms were collected from two square-foot Surber samples at the site. The samples averaged 85 organisms, 1.1 ml. volumetric displacement, and represented 23 different taxa.

Fish Collected:


		% by		% bу
Species	No.	No.	<u>Wt.</u>	Wt.
Rock bass Smallmouth bass	6 1	0.9 0.2	1.3 t	14.3
Nongame Fish Forage Fish	6 646	0.9 98.0	1.1 6.7	12.1 73.6
Total	659		9.1	

Comments - This stream was surveyed primarily to assess its potential for possible translocation of the native brook trout (Salvelinus fontinalis), to develop a fish species diversity list, and collect stream information for TADS.

Rock bass (Ambloplites rupestris) were the only game fish collected with the exception of one 3 in. samllmouth bass (Micropterus dolomieui). The warpaint shiner (Notropis coccogenis) and the striped shiner (N. chrysocephalus) made up 45% of the total number of nongame fish collected. A total of 17 fish species was collected from the site.

Benthic macroinvertebrates from our samples included representatives of Heptageniidae and Oligoneuriidae mayflies, Glossosomatidae, Hydropsychidae, Limnephilidae, Philopotamidae, and Psychomyiidae caddisflies, perlid stoneflies, and Elmidae and Psephenidae beetles. River snails (Goniobasis simplex and Pleurocera unciale) were present and abundant.

This is a very clean stream with little apparent non-point-source siltation. In late September 1987, approximately 500 Owhi strain brook trout were stocked. These fish averaged about 7 to 8 in. and were stocked from Little Creek Church upstream for about 1.25 mile. A follow-up check should be made to document the outcome of the stocking. If the Owhi strain survives, possibly the native strain brook trout could be transplanted in Little Creek to help expand the range of the native trout.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

A. LOCATION Watershed Powell River Lat-Long 363315N - 833417W Stream Little Creek ... Length of Sample 300' Area or Station Little Cr. Church Reach 06010206-County Claiborne Date/Time 18 September 1987/0800 Data Collected By Chester J. Ellison and Rick Sandifer B. PHYSICAL CHARACTERISTICS 1. Average Width 14.3' Average Depth 0.4' Maximum Depth 1.25' 2. Estimated Percent of Stream in Pools is 25 % 3. Estimated Percent Pool Bottom is Mud 2 % Silt 3 % Sand 15 % Clay 2 % Gravel 28 % Rubble 25 % Boulders 15 % Bedrock 10 % Other - % 4. Estimated Percent Riffle Bottom is Mud 5 % Silt 10 % Sand 45 % Bedrock 15 % Other Rubble 25% 5. Abundance of Littoral Aquatic Plants is Numerous Average X Scarce 6. Cover Abundance (overhanging banks, logs, roots, etc.) is Good in 35 % of stream, Average in 25 %, Poor in 40 %. 7. Shade or Canopy Good over _____60 % of Stream. 8. Flow (c.f.s.) 4.8 : Flow compared to Normal: Low X Normal High * 9. D.O. 10.2 ppm Temp. 62.6 F % Saturation 104.6 10. Present Weather Cloudy 11. Past Weather (last 24 hours) Fair ** 12. D.O. 10.2 pH 8.2 Temp. 62.6 Conductivity -13. Comments: Sample location directly behind Little Creek Church. * Taken with YSI. ** Taken with Cole Parmer pocket pH meter.

what lacking due to the low flow condition of the stream.

Stream condition looks good due to the low silt. Shelter some-

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Powell River	Lat-Long 363315N - 833417W
Body of Water Little Creek	Date 18 September 1987
County or River Mile Claiborne	Reach 06010206-
Type of Sampling Electrofishing	Pool Elevation 1115'
Gear Type Backpack shocker, one	Time 0930-1045
shocker @ 350 v AC	

SPECIES	CODE	NUMBER	LENGTH	WT.	*	*	*
Ambloplites rupestris	13	1	5	0.1			
" "	11	2	6	0.3			
n n	tt	1	7	0.2	·		
n n	t1	1	8	0.3			
11 11	†1	1	9	0.4			
Micropterus dolomieui	218	1	3	t			
Hypentelium nigricans	166	6	3-12	1.1			
Campostoma anomalum	25	96	2-5	1.6			
Hybopsis amblops	155	22	3	0.18			
Nocomis micropogon	234	2	6	0.2			
Notropis coccogenis	248	185	2-5	1.0			
Notropis chrysocephalu	s 249	110	2-7	2.1			
Notropis galacturus	253	4	2-3	t	·		
Notropis leuciodus	255	5	2-3	t			
Notropis spilopterus	269	6	2-3	t			
Votropis telescopus	272	84	2-3	0.3			
Rhinichthys atratulus	351.	72	1-4	0.53			
Pimephales notatus	334	1	3	t			
Etheostoma blennioides	81	8	Ц	0.2			
Etheostoma simoterum	111	4	2-3	0.09			
Cottus carolinae	40	47	2-4	0.5			
					,		ļ

* Label Parameter List	ed			
Field Notes: 300' a	sample length			
Name of Collector(s):_	Chester J. E	llison and	Rick Sandifer	

WR-0525

Little Creek: Edge Surber sample

18 September 1987

Field # 072

Claiborne Co., TN; Directly behind Little Creek Church. Coordinates: 363315N - 833417W. Wheeler, Tenn.-VA., # 153 SE Quad. Reach # 06010206-.

TAXA	NUMBER
COLEOPTERA: Elmidae/Optioservus larvae Promoresia tardella larva Psephenidae/Psephenus herricki	4 1 13
DIPTERA: Chironomidae Empididae pupa	3 1
EPHEMEROPTERA: Heptageniidae/Epeorus (Iron) Heptagenia Stenacron Stenonema	1 3 8 4
GASTROPODA: Pleuroceridae/Goniobasis simplex unciale	9 4
ISOPODA: Asellidae/Lirceus	41
PLECOPTERA: Perlidae/Acroneuria	1
TRICHOPTERA: Glossosomatidae/Glossosoma pupa Hydropsychidae/Cheumatopsyche Hydropsyche betteni/depravata Symphitopsyche sparna Limnephilidae/Goera (early instar) Neophylax pupa Philopotamidae/Dolophilodes distinctus Psychomyiidae/Psychomyia flavida	1 1 1 1 1 1
	101

Volumetric Displacement was 1.25 ml.

Little Creek: Midstream Surber sample

18 September 1987

Field # 072

Claiborne Co., TN; Directly behind Little Creek Church. Coordinates: 363315N - 833417W. Wheeler, Tenn.-VA., # 153 SE Quad. Reach # 06010206-.

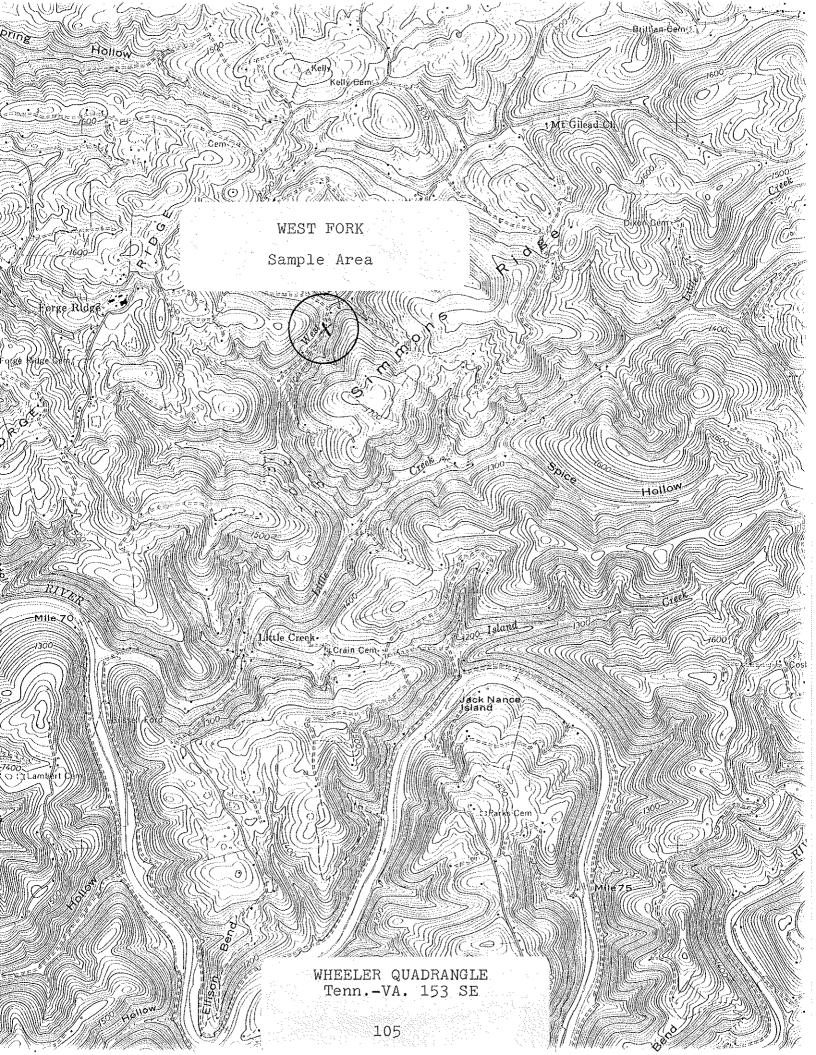
TAXA	NUMBER
COLEOPTERA: Elmidae/Optioservus larva Psephenidae/Psephenus herricki	1 13
DIPTERA: Chironomidae	1
EPHEMEROPTERA: Heptageniidae/Stenacron Stenonema Oligoneuriidae/Isonychia	3 6 1
GASTROPODA: Pleuroceridae/Goniobasis simplex unciale	10 2
ISOPODA: Asellidae/Lirceus	21
PLECOPTERA: Unidentified adult Perlidae/Paragnetina media	1 2
TRICHOPTERA: Philopotamidae/Dolophilodes distinctus larvae pupa	6 1
	68

Volumetric Displacement was 1.0 ml.

West Fork

- One qualitative fishery survey was conducted in September 1987:
- Location and Length Tributary to Little Creek (Powell River tributary). The sample area was located about 0.65 mi. SW of Highway 63 on Ramsey Hollow Road, at about 0.95 mi. upstream of the mouth, and was sampled on 18 September 1987. It was 125 ft. in length and averaged 7.7 ft. in width. The site was in Claiborne County. Wheeler Quadrangle.
- Gear Type The site was sampled using backpack electrofishing equipment. One shocker, operating at 350 v. AC, was used.
- Water Quality Data were taken from midstream with a Model 58 YST meter and a Cole Parmer Pocket pH meter. On 18 September 1987: DO 8.9 ppm, pH 8.3, Temperature 67.1 F.
- Benthos Collection Benthic organisms were collected from two square-foot Surber samples at the site. The samples averaged 74 organisms, 0.3 ml. volumetric displacement, and represented 16 different taxa.

Fish Collected:


173 Forage fish weighing 0.9 lb.

Comments - This stream was surveyed primarily to assess its potential for possible translocation of the native brook trout (Salvelinus fontinalis), to develop a fish species diversity list, and collect stream information for TADS.

No game fish were collected at this site, only blacknose dace (Rhinichthys atratulus) and banded sculpin (Cottus carolinae) were found. About 0.4 mi. upstream of the sample site another area of the stream was checked. Here, six small rainbow trout (Salmo gairdneri) were collected along with blacknose dace, banded sculpin and a few central stonerollers (Campostoma anomalum).

Benthic macroinvertebrates from our samples included representatives of Baetidae, Heptageniidae, and Oligoneuriidae mayflies, Glossosomatidae, Hydropsychidae, and Limnephilidae caddisflies, Peltoperlidae stoneflies, and Elmidae and Psephenidae beetles. Periwinkle snails (Goniobasis simplex) were abundant.

This is a very clean stream with little apparent non-point-source siltation. In late September 1987, approximately 100 Owhi strain brook trout, 7 to 8 in. long, were stocked in the stream. A follow-up check should be made to document the outcome of the stocking.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

	1100	in the second se
		ershed Powell River Lat-Long 363418N - 833328W
	Str	eam West Fork Length of Sample 125'
	Are	a or Station 0.95 ml. above mouthReach 06010206-
	Cou	nty Claiborne Date/Time 18 September 1987/1400
	Data	a Collected By Chester J. Ellison and Rick Sandifer
В.	PHY	SICAL CHARACTERISTICS
	1.	Average Width 7.7' Average Depth 0.5' Maximum Depth 1.25'
	2.	Estimated Percent of Stream in Pools is 60 %
	3.	Estimated Percent Pool Bottom is Mud 5 % Silt 5 % Sand 15 %
		Clay 5 % Gravel 25 % Rubble 15 % Boulders 5 %
		Bedrock 25 % Other - %
	4.	Estimated Percent Riffle Bottom is Mud 2 % Silt 3 % Sand 15 %
		Bedrock 65 % Other Rubble 15%
	5.	Abundance of Littoral Aquatic Plants is Numerous X
		Average Scarce
	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in 15 %
		of stream, Average in 10 %, Poor in 75 %.
	7.	Shade or Canopy Good over 50 % of Stream.
	8.	Flow (c.f.s.) 2.2 : Flow compared to Normal: Low X Normal High
*	9.	D.O. 8.9 ppm Temp. 67.1°F % Saturation 97.4
	10.	Present Weather Fair
	11.	Past Weather (last 24 hours) Fair
* *	12.	D.O. <u>8.9</u> pH <u>8.3</u> Temp. <u>67.1</u> Conductivity
	13.	Comments: Sample location about 0.65 mi. SW of Hwy. 63 on Ramsey
		Hollow Road; and 0.95 mi. above the mouth. Shelter lacking in
		the largest portion of the stream. * DO taken with YSI meter.
		** pH taken with Cole Parmer pocket pH meter.

FISH FIELD DATA FORM ... TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Powell Rive	er	I	Lat-Long	3634181	v - 8333	328W		
Body of Water West For								
County or River Mile Cla								
Type of Sampling Electro					30'			
Gear Type Backpack sho	ocker @ mple le	350 v.7 ngth.	Time 150	00-1530				
SPECIES Name	CODE	NUMBER	LENGTH	WI.	*	*	*	
Cottus carolinae	40	41	14	0.4				
Rhinichthys atratulus	351	132	1-3	0.5				
					1			
					w			
							ĺ	
	,							
						<u> </u>		
								
						<u> </u>	!	
							<u> </u>	
							:	
					·		1	
							<u> </u>	
			<u> </u>	! 		1		
		<u> </u>		1		<u> </u> 		
		<u> </u>	<u> </u>	!			· · · · · · · · · · · · · · · · · · ·	
Label Parameter Listed			<u> </u>	!		I		
Field Notes:								
Name of Collector(s): Ch	ester .	J. Ellis	on and F	Rick Sand	lifer			

WR-0325

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Powell River	Lat-Long 363435N - 833340W
Body of Water West Fork	Date 18 September 1987
County or River Mile Claiborne	Reach 06010206-
Type of Sampling Electrofishing	Pool Elevation 1280'
	Time
v AC	

Name	SPECIES	CODE	NUMBER	LENGTE	wr.	*	*	*
Salmo gair	dneri	353	•	4	0.05			
11	п	11		6	0.15			
"	11	11		4	0.1			
11	11	11		5	0.1			
11	11	11		5	0.1			
tt .	n	11		5	0.1			
41. (1. (1. (1. (1. (1. (1. (1. (1. (1. (
	**************************************	Ì						
		· ·		ĺ				
				1	<u></u>		_	
				<u> </u>				
				<u> </u>				
		1			İ			İ
	<u></u>							:
				1				i
				<u> </u>	i			:
		<u> </u>		1	1	<u></u>		
· · · · · · · · · · · · · · · · · · ·				!	!		1	·
				1	!			
		<u> </u>		!			<u> </u>	:
				1	1		<u> </u>	
				<u> </u>			ļ	;

^{*} Label Parameter Listed

Field Notes: Sample length was approx. 0.2 mi. and started at about 1.3 mi. above the mouth. Rhinichthys atratulus, Cottus carolinae, and 3 or 4

Name of Collector(s): Campostoma anomalum collected here also.

WR-0525

Chester J. Ellison and Rick Sandifer

West Fork: Edge Surber sample

18 September 1987

Field # 073

Claiborne Co., TN; About 0.95 mi. upstream of the mouth. Coordinates: 363418N - 833328W. Wheeler, Tenn.-VA., # 153 SE Quad. Reach # 06010206-.

TAXA	NUMBER
COLEOPTERA: Elmidae/Optioservus larvae Stenelmis adults Psephenidae/Psephenus herricki	16 6 4
DIPTERA: Chironomidae	1
EPHEMEROPTERA: Baetidae/Baetis Heptageniidae/Heptagenia Oligoneuriidae/Isonychia	2 1 2
GASTROPODA: Pleuroceridae/Goniobasis simplex	71
HETEROPTERA: Veliidae/Rhagovelia obesa	1
TRICHOPTERA: Glossosomatidae/Glossosoma pupa Hydropsychidae/Cheumatopsyche Limnephilidae/Goera	1 1 2
	108

Volumetric Displacement was 0.4 ml.

West Fork: Midstream Surber sample

18 September 1987

Field # 073

Claiborne Co., TN; About 0.95 mi. upstream of the mouth. Coordinates: 363418N - 833328W. Wheeler, Tenn.-VA., # 153 SE Quad. Reach # 06010206-.

TAXA	NUMBER
COLEOPTERA: Elmidae/Stenelmis adults Psephenidae/Psephenus herricki	3 4
EPHEMEROPTERA: Baetidae/Baetis Heptageniidae/Heptagenia Stenonema Oligoneuriidae/Isonychia	1 1 4 2
GASTROPODA: Pleuroceridae/Goniobasis simplex	20
ISOPODA: Asellidae/Lirceus	1
PLECOPTERA: Peltoperlidae/Peltoperla	3
TRICHOPTERA: Limnephilidae/Neophylax pupa	1
	40

Volumetric Displacement was 0.25 ml.

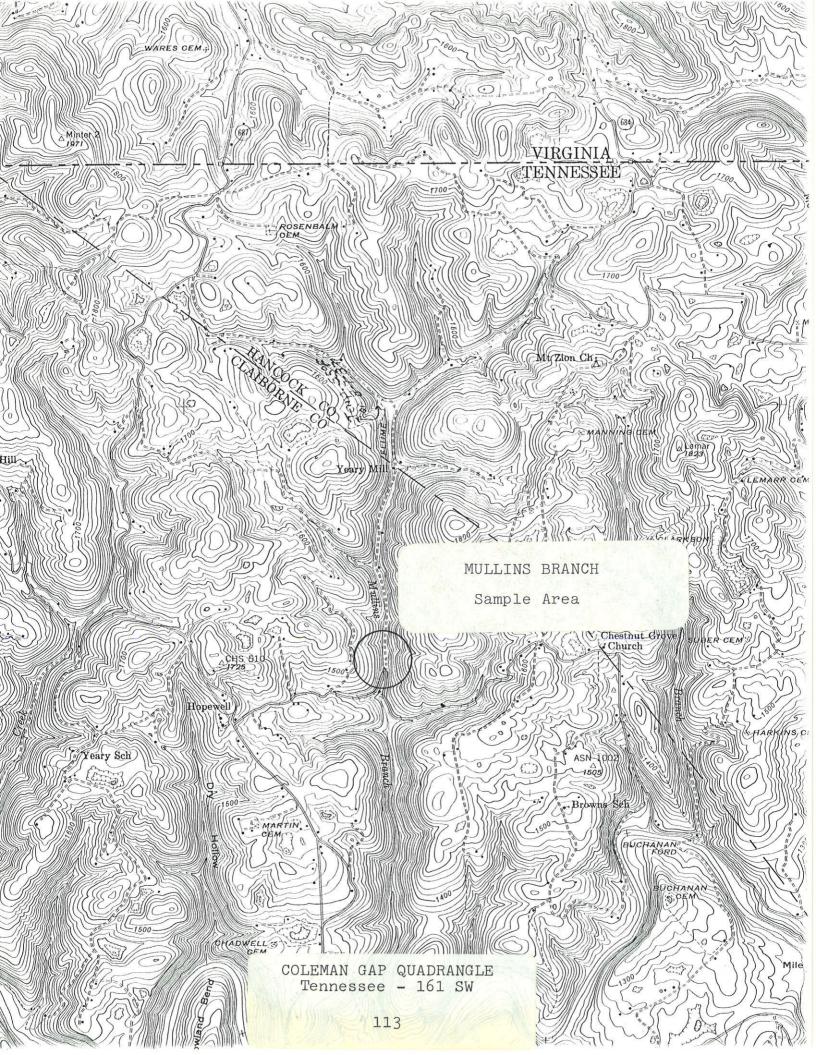
Mullins Branch

One qualitative fishery survey was conducted in August 1987:

Location and Length - Tributary to the Powell River. The sample area was located approximately 0.1 mi. upstream of Yeary Road crossing and was sampled on 7 August 1987. It was 350 ft. in length and averaged about 12 ft. in width. The site was in Claiborne County. Coleman Gap Quadrangle.

Gear Type - The site was sampled using backpack electrofishing equipment. Two shockers, operating side by side at 110 v. AC, were used.

Water Quality - Data were taken from midstream with a Cole Parmer Pocket pH meter and a hand held thermometer. On 7 August 1987: pH - 8.5, Temperature - 63.0 F.


Benthos Collection - No collection was made.

Fish Collected:

		% by		% by
<u>Species</u>	No.	No.	Wt.	Wt.
Rainbow trout	26	20.3	1.65	44.0
Nongame Fish Forage Fish	102	79.7	2.1	56.0
Total	128		3.75	

for possible translocation of the native brook trout (Salvelinus fontinalis) and to develop a fish species diversity list for TADS. Rainbow trout (Salmo gairdneri) were the only game fish collected and the stream appears to support a healthy stream reproducing population. We have no former documentation of trout being present or record of trout ever being stocked in this stream. However, Mike Smith (former Claiborne County wildlife officer) stated that he knew rainbow trout were present there in 1979. A total of 6 forage fish species was collected with the banded sculpin (Cottus carolinae) being the most common.

The stream is very clean with only light siltation and the watershed is mostly forested land with little apparent disturbance. It is fed by several springs that head up the stream and account for the low water temperature. The beauty of the stream course and the size of the trout population could readily be compared to similar size streams in the Great Smoky Mountains National Park or Cherokee National Forest. However, small stream size greatly limits the potential for any significant fishery. Also, the presence of a well established rainbow trout population precludes any brook trout management.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

Α.	LC	CA	TT	ΩN
<i>r</i> 1.	1			

	Wa	tershed Powell River Lat-Long 363407N - 832640W
	St	ream Mullins Branch Length of Sample 350' Approx. 0.1 mi. above
	Are	ea or StationYeary Rd. crossing Reach 06010206-
	Cot	inty Claiborne Date/Time 7 August 1987/1800
	Dat	ta Collected By R.D. Bivens & C.J. Ellison
3.	PHY	KSICAL CHARACTERISTICS
	1.	Average Width 9'-13' Average Depth 0.3' est. Maximum Depth 2' est.
	2.	Estimated Percent of Stream in Pools is 45 %
	3.	Estimated Percent Pool Bottom is Mud % Silt 5 % Sand 10 %
		Clay - % Gravel 30 % Rubble 35 % Boulders 10 %
		Bedrock 10 % Other - %
	4.	Estimated Percent Riffle Bottom is Mud _ % Silt 5 % Sand 10 %
		Bedrock 5 % Other Gravel 30% Rubble 50%
	5.	Abundance of Littoral Aquatic Plants is Numerous
		Average Scarce X
	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in 40 %
		of stream, Average in 20 %, Poor in 40 %.
	7.	Shade or Canopy Good over 90 % of Stream.
	8.	Flow (c.f.s.) - : Flow compared to Normal: Low Normal High
	9.	D.O. Temp. 63°F % Saturation -
	10.	Present Weather Partly cloudy, hot, and humid.
	11.	Past Weather (last 24 hours) Hot and humid, some thunderstorms.
*	12.	D.O pH <u>8.5</u> Temp. <u>63</u> Conductivity
	13.	Comments: Sample location was along the forest road approximately
		0.1 mi. upstream of Yeary Road crossing. * Taken with pocket
		pH meter. Appears to be a good little trout stream.

TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Powell River	Lat-Long 363407N - 832640W
Body of Water Mullins Branch	Date 7 August 1987
County or River Mile Claiborne	Reach 06010206-
Type of Sampling Electrofishing	Pool Elevation 1305'
Gear Type Two backpack shockers side side @ 110 v. AC.	Time 1830-1900

side @ 110 v.	AC.		T	Ţ	7	,	7
SPECIES Name	CODE	NUMBER	LENGTH	WT.	*	*	*
Salmo gairdneri	353	2	2	t			
n n	II	16	3	0.25			
11 11	††	2	4	0.05			
n n	tr	2	7	0.3			
n n	11	2	8	0.4			
n n	11	2	9	0.65			
Campostoma anomalum	25	10	3-5	0.35			
Notropis coccogenis	248	5	3-4	0.1			
Notropis chrysocephal	us 249	17	3-5	0.5			
Rhinichthy's atratulus	351	17	2-3	0.2			
Etheostoma blennioide	s 81	3	3-4	0.05			
Cottus carolinae	40	50	2-5	0.9			
							
——————————————————————————————————————					······································		
				·	'	!	

^{*} Label Parameter Listed

Field Notes: Sample length 350'. All rainbow trout collected were stream reared fish. Increase of fish cover could improve stream.

Name of Collector(s): Rick D. Bivens, Chester J. Ellison, and Rick Sandifer WR-6525

Tellico River

Two qualitative and one quantitative fishery surveys were conducted in July and October 1987:

- Location and Length Sample area 1 was just dounstream of Nars Ford, Tellico River mi. 21.65, and was sampled on 21 October 1987. The sample area was 400 ft. in length and averaged 73.8 ft. in width. Sample area 2 was just downstream of the mouth of Oosterneck Creek, Tellico River mi. 32.07, and was sampled on 6 October 1987. The sample area was 300 ft. in length and averaged 96.3 ft. in width. Sample area 3 was about 1 mi. upstream of the Tellico Trout Rearing Station, at Davis Creek Campground, and was sampled on 29 July 1987. It was 300 ft. in length and averaged 45.6 ft. in width. All three sites were in Monroe County. Site 1, Mount Vernon Quadrangle. Site 2, Bald River Falls Quadrangle. Site 3, Big Junction Quadrangle.
- Gear Type All three sites were sampled using backpack electro-fishing equipment. Sample area 1 was sampled using two shockers, operating side by side, at 350 v. AC, and also shocking into a 30 ft. seine on the riffle areas. Area 2 was sampled using five shockers, operating side by side, at 350 v. AC, and making three passes for a fish population estimation using a depletion estimator. Sample area 3 was sampled using two shockers, operating side by side, at 700 v. AC.
- Water Quality Data were taken from midstream with a 4041

 Hydrolab at site 1 and 2. Area 3 was sampled with a Model 58 YSI meter and a Hach Pocket pH meter. Area 1, on 21

 October 1987: DO 8.0 ppm, pH 7.0, Temperature 54.5 F, Conductivity 108 micromhos/cm. Area 2, on 6 October 1987: DO 10.0 ppm, pH 7.3, Temperature 52.7 F, Conductivity 41 micromhos/cm. Area 3, on 29 July 1987: DO 8.9 ppm, pH 6.7, Temperature 67.1 F.
- Benthos Collection Benthic organisms were collected from two square-foot Surber samples at each site. Area 1 averaged 20 organisms, 0.25 ml. volumetric displacement, and represented 10 different taxa. Area 2 averaged 32 organisms, 0.4 ml. volumetric displacement, and represented 17 different taxa. Area 3 averaged 15 organisms, 0.8 ml. volumetric displacement, and represented 12 different taxa.

Fish Collected: (See accompanying tables)

Comments - Three areas of the Tellico River were sampled primarily to update fishery data for the agency and collect stream

information for TADS. One sample site was located in the trout water portion of the river and the other two were located in the lower reach, one upstream of Tellico Reservoir, the other upstream of Tellico Plains.

At the upstream area, we collected 38 rainbow trout ($Salmo\ gairdneri$) and 1 brown trout ($S.\ trutta$). A total of 5 fish species was collected from the site with trout comprising about 67% by numbers and 63% by weight of all fish collected. The water quality is generally excellent, and the river is the water source for the Tellico Trout Rearing Station.

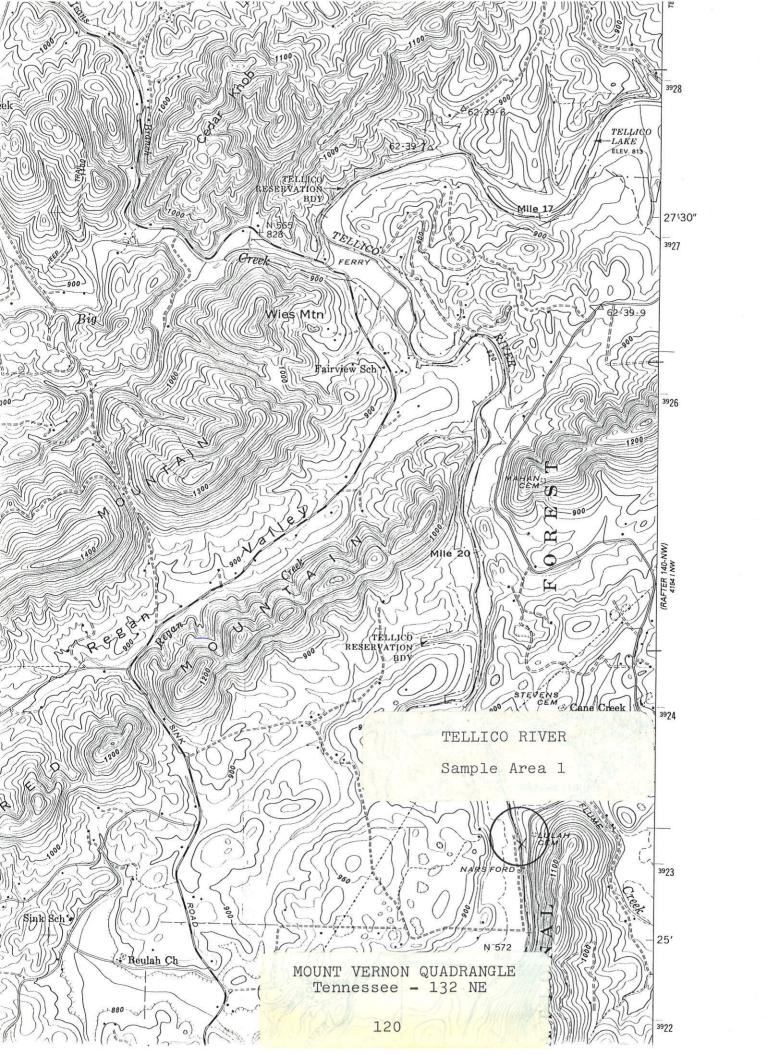
At the sample area upstream of Tellico Plains, smallmouth bass (Micropterus dolomieui) and rock bass (Ambloplites rupestris) were the only game fish collected. The number of smallmouth bass was almost twice the number of rock bass collected, but rock bass comprised about 10% and smallmouth bass about 5% by weight of all fish collected. Population estimations were made at this site using a three-pass depletion method. Estimated number and weight per acre by species is presented in the accompanying table. A total of 19 fish species was collected from this site.

At the lower site, redbreast sunfish (Lepomis auritus) and bluegill (L. macrochirus) were the primary game fish collected by numbers. However, rock bass made up about 13%, while both bluegill and redbreast sunfish comprised only 11% of the total weight of all fish collected. A single 4 in. largemouth bass (M. salmoides) was also collected. In all a total of 30 fish species was collected from this site.

The upper portion of Tellico River from Turkey Creek to the North Carolina line is considered one of the state's prime trout streams and it is managed as such. Downstream from Turkey Creek to Tellico Reservoir, there is good fishing for smallmouth bass and rock bass. Based on our recent surveys, rock bass apparently provides the better of the two. A total of 37 fish species was collected from all sites combined. Large numbers of rather intolerant cyprinids, such as the telescope shiner (Notropis telescopus) and the Tennessee shiner (N. leuciodus), collected at our sample area upstream of Tellico Plains further attest to the water quality. Also, it is interesting to note the presence of the tangerine darter (Percina aurantiaca), a species that is considered of "Special Concern" by the Tennessee Heritage Program (Starnes and Etnier 1980).

Benthic macroinvertebrates from our samples included Baetidae, Caenidae, Ephemerellidae, Heptageniidae, and Oligoneuriidae mayflies, Brachycentridae, Hydropsychidae, Philopotamidae, and Rhyacophilidae caddisflies, Capniidae, Perlidae, and Pteronarcyidae stoneflies, elmid riffle beetles, and hellgrammites (Corydalus cornutus). Asian clams (Corbicula fluminea) and pleurocerid snails (Anculosa subglobosa and Pleurocera unciale) were collected from the lower site only.

Fish collected in three samples of the Tellico River.


Area 3	% by Wt.	3.9 53.4		2.6 35.6	7.3
Ar	% by	65.7		22.4	
	No.	38		13	53
	% by Wt.	Ш	10.3	20.5	
Area 2	Wt	r	2.62	7.42	25.37
AI	% by		9.0	6.9	
	No.	0	12	138 1819	1992
	% by Wt.	0.2	13.3	42.3 32.9	
Area 1	Wt.	0.03	20.4 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	6.62	15.44
Ar	% by	0.1	4.50 4.00 4.00 4.00 4.00 4.00 4.00 4.00	83.7	
	No.	m	117	695	830
	Species	Rainbow trout Brown trout Largemouth bass	Rock bass Bluegill Redbreast sunfish	Nongame Fish Forage Fish	Total

the Ç α sample area fish species collected at all Calculated standing crop of Tellico River.

Species	Total No. Collected	% by	Total Wt. Collected	% by Wt.	Est. No./ac	Est. 1b./ac
Smallmouth bass Rock bass Northern hog sucker Black redhorse Central stoneroller River chub Warpaint shiner Tenessee shiner Telescope shiner Creek chub Greenside darter Spotted darter Redline darter Tenn. snubnose darter Banded darter Logperch Logperch Gilt darter	0 870101710 5148 80 40 80 80 80 80 80 80 80 80 80 80 80 80 80	1000H0000H00H00H00H00H00H00H00H00H00H00H	· · · · · · · · · · · · · · · · · · ·	000000 + 00000000000000000000000000000	2 30 30 10 10 10 10 10 10 10 10 10 10 10 10 10	
년 당 그	y V		0.0		4	1

 $^{\mathrm{a}}\mathrm{No}$ population estimate generated, all fish caught on 1st pass.

^bEstimate arbitrarily set to 1.5 times the total catch due to non-descending removal pattern. Results should not be considered reliable.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

л.	MOG.	
	Wat	ershed <u>Little Tennessee River</u> Lat-Long 352519N - 841533W
	Str	eam Tellico River "Length of Sample 400'
	Are	a or Station Site # 1 Reach 06010204-9,0
	Cou	nty Monroe Date/Time 21 October 1987/1030
	Data	a Collected By R. Bivens, D. Lane, C. Ellison, and D. Pollard
в.		SICAL CHARACTERISTICS
	1.	Average Width 73.8' Average Depth 1.1' Maximum Depth 3.9'
	2.	Estimated Percent of Stream in Pools is 30 %
	3.	Estimated Percent Pool Bottom is Mud 5 % Silt 10 % Sand 10 %
		Clay - % Gravel 20 % Rubble 40 % Boulders 15 %
		Bedrock - % Other - %
	4.	Estimated Percent Riffle Bottom is Mud 5 % Silt 10 % Sand 10
		Bedrock - % Other Rubble 40% Gravel 30% Boulders 5%
	5.	Abundance of Littoral Aquatic Plants is Numerous
	٠.	Average Scarce X
	۷.	
	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in 30 %
		of stream, Average in 40 %, Poor in 30 %.
	7.	Shade or Canopy Good over 70 % of Stream.
	8.	Flow (c.f.s.) 84,4 : Flow compared to Normal: Low X Normal High
	9.	D.O. 8.0 ppm Temp. 54.5°F % Saturation 75
	10.	Present Weather Partly cloudy, cool, and breezy, air temp 56°F.
	11.	Past Weather (last 24 hours) Cloudy with showers, cold overnight.
	12.	D.O. <u>8.0</u> pH <u>7.0</u> Temp. <u>54.5</u> Conductivity <u>108</u>
	13.	Comments: Sample location ca. 600' below Nars Ford off Belltown
		road at Tellico River mile 21.65.

TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Little Tennes	see Ri	ver	Lat-Long 352519N - 841533W						
Body of Water Tellico F	River		Date 21 October 1987						
County or River Mile Mor	roe		Reach 06010204-9,0						
Type of Sampling Electro	fishin	<u></u>	Pool Elev	ation 83	L7 '				
Gear Type Two backpack			Time 120						
side by side @ 350 v.	AC and	i shocki	ng into	30' sei	ne on r	lffle aı	eas.		
SPECIES Name	CODE	NUMBER	LENGTH	WT.	*	*	*		
Micropterus salmoides	220	1	4	0.03					
Ambloplites rupestris	13	3	3	0.01					
tt tt	11	1	5	0.08					
n n	11	1	6	0.11					
n n	11	4	7	0.87					
n n	11	1	8	0.31					
n n	Ħ	1	10	0.67					
Lepomis auritus	201	1	1	t					
п	tt	1.	2	0.01					
n n	Ħ	10	3	0.14					
n n	11	7	4	0.23					
11 11	11	3	5	0.19					
" "	11	3	6	0.39					
11 11	11	1	7	0.17					
Lepomis macrochirus	206	2	2	0.02					
n n	11	12	3	0.19					
<i>n n</i>	11	3	4	0.08		· · · · · · · · · · · · · · · · · · ·			
11 11	11	1	5	0.06					
11 11	17],	7	0.2		**************************************			
Noturus eleutherus	283	17	2-3	0.06					
Hypentelium nigricans	166	59	3-10	4.5					
Moxostoma duquesnei	229	4	7-11	0.54					
Moxostoma erythrurum	230	1.	3	0.01	1				
Continued	on	next	page				}		
* Label Parameter Listed									
Field Notes: 400' sample	e lengt	h. Two	Necturu	s macul	osus col	lected	from		
this site. Also, one									
Name of Collector(s): Ric									

Daniel Pollard

WR-G525

TENNESSEE WILDLIFE RESOURCES AGENCY

River Mile Monroe	Reach	06010204	Date <u>21 October 1987</u> Reach 06010204-9,0					
ampling Electrofishing	Pool Elev	ation 81	7 '					
Two backpack shockers		200-1400		P*12 AS				
side @ 350 v. AC and shock	ing inco							
SPECIES CODE NUMBER	LENGTH	WT.	*	*	*			
oma anomalum 25 151	2-6	2.23	· ·					
s carpio 47 1	14	1.35						
s amblops 155 4	2	0.01						
micropogon 234 57	2-5	0.7			ļ			
s coccogenis 248 90	1-4	0.42						
s chrysocephalus 249 17	2-4	0.14						
s galacturus 253 1	3	t						
s leuciodus 255 163	1-3	0.32		ļ				
s spilopterus 269 22	1-3	0.06						
s telescopus 272 1	2	t	·					
bius uranops 330 12	2-3	0.13						
oma blennioides 81 26	2-4	0.23			_			
oma rufilinea um 108 21	2	0.08		<u> </u>				
oma simoterum 111 28	2	0.08						
oma zonale 135 3	2	t	· · · · · · · · · · · · · · · · · · ·		_			
caprodes 306 28	2-5	0.3						
evides 310 25	1-3	0.11		<u> </u>	<u> </u>			
sciera 317 9	2-3	0.06		<u> </u>				
carolinae 40 19	2-3	0.13						
thes sicculus 189 1	3	t						
ea appendix 192 11	6-7	0.21						
myzon greeleyi 170 2	5	0.01						
			<u> </u>					
				0.01	0.01			

Tellico River: Site # 1, Edge Surber sample

21 October 1987

Field # 078

Monroe Co., TN; Nars Ford at Tellico River mi. 21.65. Coordinates: 352519N - 841533W. Mount Vernon, Tenn., # 132 NE Quad. Reach # 06010204-9,0.

TAXA	NUMBER
COLEOPTERA: Elmidae/Optioservus larvae Promoresia tardella larvae	2 2
DIPTERA: Chironomidae	2
EPHEMEROPTERA: Heptageniidae/Stenonema Oligoneuriidae/Isonychia	1
GASTROPODA: Pleuroceridae/Anculosa subglobosa Pleurocera unciale	10 3
PELECYPODA: Corbiculidae/Corbicula fluminea	4
TRICHOPTERA: Hydropsychidae/Hydropsyche venularis	2
	27

Volumetric Displacement was 0.25 ml.

Tellico River: Site # 1, Midstream Surber sample

21 October 1987

Field # 078

Monroe Co., TN; Nars Ford at Tellico River mi. 21.65. Coordinates: 352519N - 841533W. Mount Vernon, Tenn., # 132 NE Quad. Reach # 06010204-9,0.

TAXA	NUMBER
COLEOPTERA: Elmidae/Optioservus larvae	5
EPHEMEROPTERA: Heptageniidae/Stenonema Oligoneuriidae/Isonychia	3 1
GASTROPODA: Pleuroceridae/Anculosa subglobosa	l
OLIGOCHAETA:	1
PELECYPODA: Corbiculidae/Corbicula fluminea	2
	13

Volumetric Displacement was 0.25 ml.

DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY 84°15′ **1750000m.**E. N. C. 440 000 FEET 12'30" 35°22′30″ Dell Mountain Mt Isubel Ch N. C. 630 000 FEET-3917000m.N. 3916 elico Ranger Station TELLICO RIVER Sample Area 2 3914 RIVER 20' 3913 BALD RIVER FALLS QUADRANGLE Tenn.-N.C. 140 SW 3912 126

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

A.	LUC											
	Wat	ershed Little Tennessee River Lat-Long 352045N - 841417W										
	Str	ream Tellico River Length of Sample 300'										
	Are	a or Station Site # 2 Reach 06010204-11,0										
	Cou	nty Monroe Date/Time 6 October 1987/1000										
	Dat	a Collected By R. Bivens, C. Ellison, D. Lane, and S. Lambert										
В.	РНҮ	SICAL CHARACTERISTICS										
	1. Average Width 96.3' Average Depth 1.0' Maximum Depth 3.1'											
	2.											
	3.											
		Clay - % Gravel 10 % Rubble 20 % Boulders 20 %										
		Bedrock 20 % Other %										
	4.	Estimated Percent Riffle Bottom is Mud % Silt 10 % Sand 20										
		Bedrock 30 % Other Gravel 10% Rubble 20% Boulders 10%										
	5.	Abundance of Littoral Aquatic Plants is Numerous										
		Average Scarce X										
	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in 40 %										
		of stream, Average in 40 %, Poor in 20 %.										
	7.	Shade or Canopy Good over 20 % of Stream.										
	8.	Flow (c.f.s.) 115.6 : Flow compared to Normal: Low X Normal High										
	9.	D.O. 10.0 ppm Temp. 52.7°F % Saturation 91										
. 1	.0.	Present Weather Partly cloudy and cool; air temp 64°F.										
1	.1.	Past Weather (last 24 hours) Partly cloudy and cool.										
1	.2.	D.O. 10.0 pH 7.3 Temp. 52.7 Conductivity 41										
1	3.	Comments: Sample location just below the mouth of Oosterneck										
		Creek, at Tellico River mile 32.07.										

TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Little Tennessee River	Lat-Long 352045N - 841417W
Body of Water Tellico River	Date 6 October 1987
County or River Mile Monroe	Reach_ 06010204-11,0
Type of Sampling Electrofishing	Pool Elevation 1010'
Gear Type 5 backpack shockers side	Time 1100-1515
hy gida M:250 y AC	

Names	SPECIES	CODE	NUMBER	LENGTE	wr.	*	*	*
Micropterus	dolomieus	218	1	11	0.5			
11	11	II	1	8	0.19			
"	п	11	1	6	0.08			
· n	11	11	6	5	0.26			
п	"	11	1	Ц	0.04			
n ·	11	91	1	3	0.02			
n	11	īf.	12	2	0.02			
Ambloplites	rupestris	13	1	10	0.54			
и	n	11	3	8	0.87			
11	<i>u</i> .	ff	2	7	0.46			
11	"	!1	3	6	0.45			
11	"	. 11	3	5	0.26			
Hypentelium	nigricans	166	128	2-10	6.77			
Moxostoma du	iquesnei	299	10	5-6	0.6			
Campostoma a	inomalum	25	344	2-7	6.5	ĺ		
Nocomis micr	opogon	234	129	1-8	2.75			
Notropis coc	cogenis	248	78	1-5	0.6			[
Notropis gal	acturus	253	183	1-5	0.29			
Notropis leu	ciodus	255	414	1-3	0.8			İ
Notropis tel	escopus	272	354	1-3	1.1		,	
Semotilus at	romaculat	us 360	1	2	t			
Etheostoma b	lennioide	s 81	100	2-5	0.95			
Etheostoma m	aculatum	101	15	1-3	0.05			
Etheostoma r	ufilineat	um 108	51.	1-3	0.15			1
	ontinued	on	next	page				1

* Label Parameter Listed

Field Notes: 300' sample length, 3 pass depletion.

Name of Collector(s): Bivens, Ellison, Lane, Lambert, Pollard, Seay,

WR-C525 Stooksbury, Nichols, Akins, Moore, and Habera

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Little Tennessee River	Lat-Long 352045N - 841417W
Body of Water Tellico River	Date 6 October 1987
County or River Mile Monroe	Reach 06010204-11.0
	Pool Elevation 1010'
Gear Type 5 backpack shockers side	Time 1100-1515
by side @ 350 v. AC	

SPECIES Name	CODE	NUMBER	LENGTH	wr.	*	*	*
Etheostoma simoterum	111	19	1-3	0.07	1		
Etheostoma zonale	135	71	1-2	0.19			
Percina aurantiaca	304	10	2-5	0.16			······································
Percina caprodes	306	17	4-5	0.4			· · · · · · · · · · · · · · · · · · ·
Percina evides	310	33	1-2	0.12			
010000		 	+ -	10.16			<u></u>
			<u> </u>	!	1		·····
· · · · · · · · · · · · · · · · · · ·			<u> </u>	<u> </u>			
			<u> </u>	<u> </u> 			
				<u> </u>			
				1			
· · · · · · · · · · · · · · · · · · ·					1		
,			<u> </u>				
<u> </u>				!			<u>12.7.2.2.2.2.2.2.2.2.2.</u>
							·
i	······································			· ·	<u> </u>		

×	Label	Pa	ram	ecer	List	a d
---	-------	----	-----	------	------	-----

Field No	otes: <u>300'sa</u> r	mple leng	gth, 3 pas	ss depi	letion.			·
			·····					
Name of	Collector(s):	Bivens,	Ellison,	Lane,	Lambert,	Pollard,	Seay,	

WR-0525

Stooksbury, Nichols, Akins, Moore, and Habera

Tellico River: Site # 2, Edge Surber sample

6 October 1987

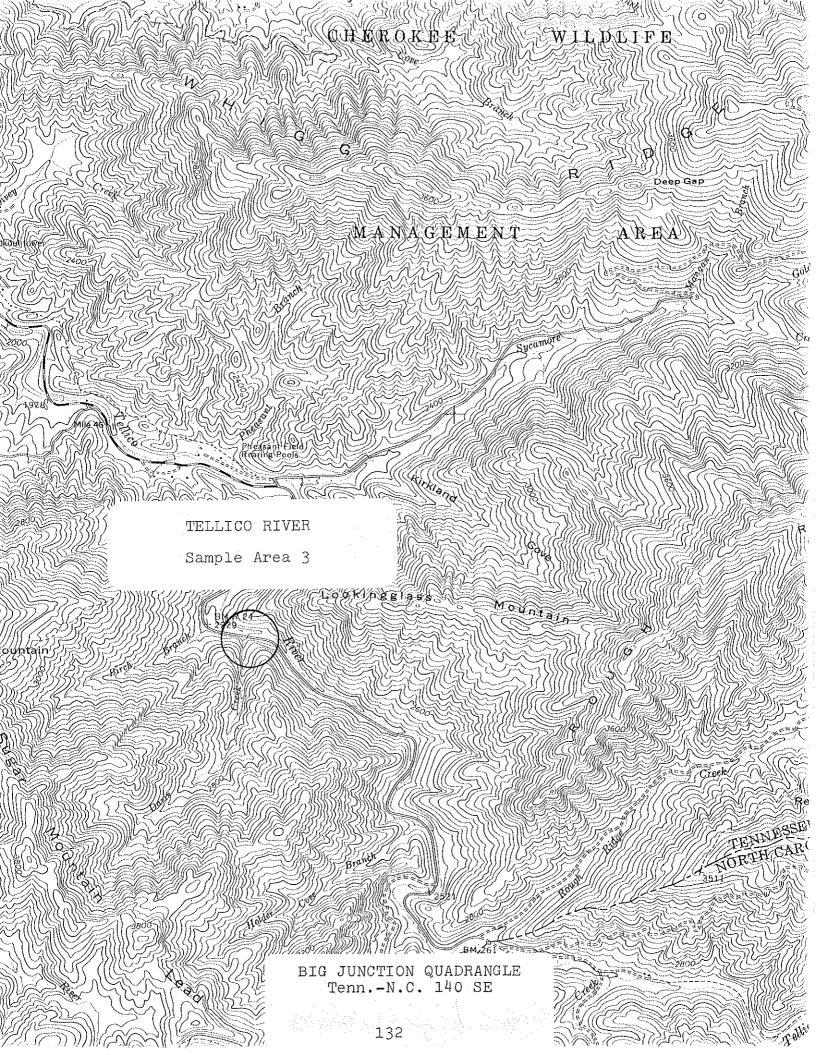
Field # 075

Monroe Co., TN; Mouth of Oosterneck Creek, Tellico River mi. 32.07. Coordinates: 352045N - 841417W. Bald River Falls, Tenn.-N.C., # 140 SW Quad. Reach # 06010204-11,0.

TAXA	NUMBER
EPHEMEROPTERA: Caenidae/Caenis Heptageniidae/Heptagenia Stenonema	1 2 1
MEGALOPTERA: Corydalidae/Corydalus cornutus	l
ODONATA: Coenagrionidae/Argia	1
TRICHOPTERA: Hydropsychidae/Cheumatopsyche	2
	8

Volumetric Displacement was 0.05 ml.

Tellico River: Site # 2, Midstream Surber sample


6 October 1987

Field # 075

Monroe Co., TN; Mouth of Oosterneck Creek, Tellico River mi. 32.07. Coordinates: 352045N - 841417W. Bald River Falls, Tenn.-N.C., # 140 SW Quad. Reach # 06010204-11,0.

TAXA	NUMBER
DIPTERA: Chironomidae Simuliidae	1 1
EPHEMEROPTERA: Caenidae/Caenis Heptageniidae/Stenonema Oligoneuriidae/Isonychia	1 4 7
ISOPODA: Asellidae/ <u>Lirceus</u>	3
MEGALOPTERA: Corydalidae/Corydalus cornutus	7
OLIGOCHAETA:	6
PLECOPTERA: Perlidae/Acroneuria abnormis	5
TRICHOPTERA: Brachycentridae/Micrasema Hydropsychidae/Cheumatopsyche Hydropsyche Hydropsyche H. venularis Symphitopsyche morosa Philopotamidae/Chimarra	1 7 3 3 5 1
	55

Volumetric Displacement was 0.8 ml.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

Α.	LOC	CATION
	Wat	ershed Little Tennessee River Lat-Long 351645N - 840553W
	Str	ream Tellico River "Length of Sample 300'
	Are	ea or Station Site # 3 Reach 06010204-13,1
	Cou	Date/Time 29 July 1987/1330
	Dat	a Collected By Rick D. Bivens and Chester J. Ellison
в.	PHY	SICAL CHARACTERISTICS
	1.	Average Width 45.61 Average Depth 0.81 Maximum Depth 3.5!
	2.	Estimated Percent of Stream in Pools is 40 %
	3.	Estimated Percent Pool Bottom is Mud 5 % Silt 10 % Sand 10 %
	-	Clay - % Gravel 5 % Rubble 20 % Boulders 50 %
		Bedrock - % Other - %
	4.	Estimated Percent Riffle Bottom is Mud _ % Silt 15 % Sand 10 %
	٠,	Bedrock - % Other Rubble 25% Boulders 50%
	5.	Abundance of Littoral Aquatic Plants is Numerous
	٠,	
		Average Scarce X
	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in 50 %
		of stream, Average in 25 %, Poor in 25 %.
	7.	Shade or Canopy Good over 80 % of Stream.
	8.	Flow (c.f.s.) 58.4 : Flow compared to Normal: Low X Normal High
*	9.	D.O. 8.9 ppm Temp. 67.1°F % Saturation 97
	10.	Present Weather Partly cloudy and hot; temperature - 85°F.
	11.	Past Weather (last 24 hours) Partly cloudy and hot.
*	12.	D.O. <u>8.9</u> pH <u>6.7</u> Temp. <u>67.1</u> Conductivity
	13.	Comments: Sample location about 1 mi. upstream from bridge at the
		hatchery; at Davis Creek Campground. * Taken with YSI meter.

pH taken with pocket pH meter.

TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Little Tennes	ssee Ri	ver	Lat-Long_	3516451	<u> 4 - 8405</u>	553W	·
Body of Water Tellico Ri	iver		Date 29	July 19	987		
County or River Mile Moni	oe.		Reach 0	<u> 6010204</u> -	-13.1		
Type of Sampling Electro	ofishin	g	Pool Eleva	ation <u>2</u> 2	25!		
Gear Type Two backpack s by side @ 700	shocker v. AC	s side	Time 14	30-1515			
SPECIES Name	CODE	NUMBER	LENGTH	WT.	*	*	*
Salmo gairdneri	353	4	3	0.1			
n n	Ħ	8	5	0.4			
11 11	11	13	6	1.1			
n n	11	7	7	1.0			
n n	11	5	8	1.0			
11 11	11	11	9	0.3			
Salmo trutta	355	1	1.3	0.7			<u> </u>
Hypentelium nigricans	166	13	7-9	2.6			
Nocomis micropogon	234	4	4-5	0.1			
Rhinichthys atratulus	351	2	3-4	t			
			ļ		<u> </u>		+
		-					
		-			<u> </u>		
				:			
		<u> </u>					_
					<u> </u>	_	
						_	
	<u> </u>	<u> </u>		<u> </u>		<u> </u>	
* Label Parameter Listed							
Field Notes: 300' sampl	e lengt	th. Al	l trout d	collecte	d appea	red to	be
stream reared fish.	<u>.</u>				·		
Name of Collector(s): L.P	Wilk:	ins, R.	D. Bivens	s, C.J.	Ellison	, and	
WR-C525	ny Akir	าร			ı		

Tellico River: Site # 3, Edge Surber sample

29 July 1987

Field # 053

Monroe Co., TN; Davis Creek Campground. Coordinates: 351645N - 840553W. Big Junction, Tenn.-N.C., # 140 SE Quad. Reach # 06010204-13,1.

TAXA	NUMBER
EPHEMEROPTERA: Baetidae/Baetis Ephemerellidae/Drunella Serratella Heptageniidae/Epeorus (Iron) Heptagenia	2 5 1 2
PLECOPTERA: Perlidae/Acroneuria abnormis	1
	12

Volumetric Displacement was 0.25 ml.

Tellico River: Site # 3, Midstream Surber sample

29 July 1987

Field # 053

Monroe Co., TN; Davis Creek Campground. Coordinates: 351645N - 840553W. Big Junction, Tenn.-N.C., # 140 SE Quad. Reach # 06010204-13,1.

TAXA	NUMBER
EPHEMEROPTERA: Ephemerellidae/Drunella	2 6
Serratella Heptageniidae/ <u>Epeorus (Tron</u>)	6 1
OLIGOCHAETA:	1
PLECOPTERA: Capniidae Perlidae/Paragnetina immarginata Pteronarcyidae/Allonarcys	1 2 1
TRICHOPTERA: Hydropsychidae/Hydropsyche Rhyacophilidae/Rhyacophila fuscula	2
	17

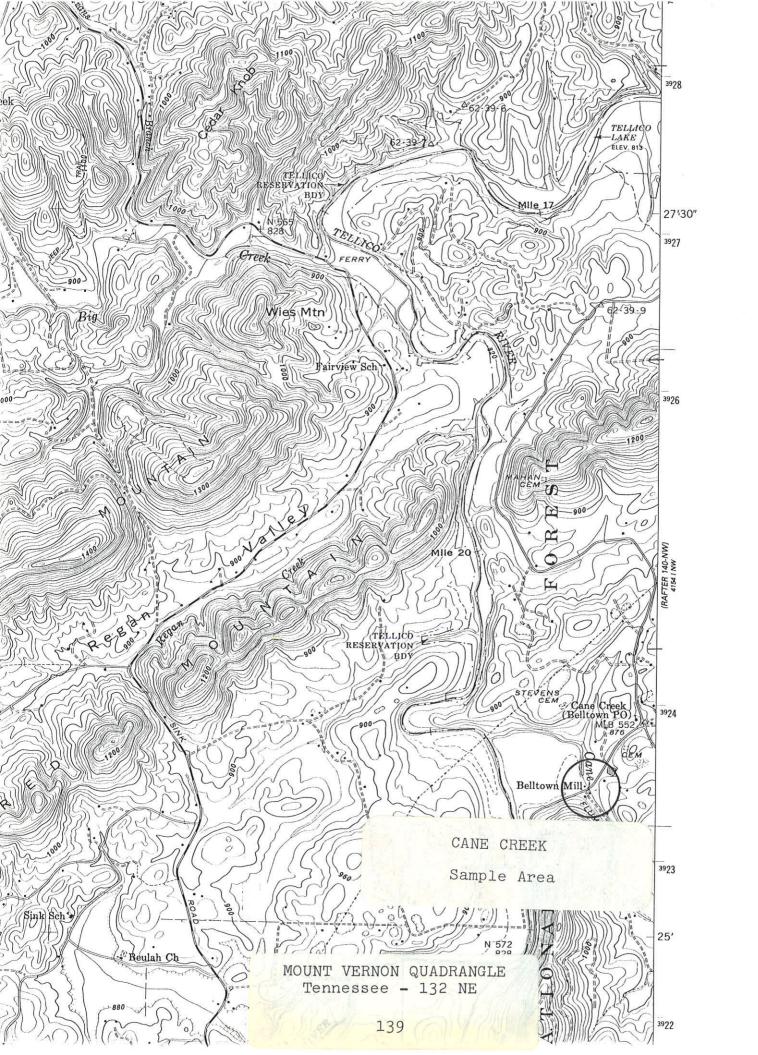
Volumetric Displacement was 1.5 ml.

Cane Creek

- One qualitative fishery survey was conducted in October 1987:
- Location and Length Tributary to the Tellico River. The sample area was located at the bridge on Belltown Road and was sampled on 21 October 1987. It was 300 ft. in length and averaged 18.7 ft. in width. The site was in Monroe County. Mount Vernon Quadrangle.
- Gear Type The site was sampled using backpack electrofishing equipment. Two shockers were operated side by side at 350 v. AC.
- Water Quality Data were taken from midstream with a 4041 Hydrolab.

 On 21 October 1987: DO 8.3 ppm, pH 7.1, Temperature
 55.0 F, Conductivity 118 micromhos/cm.
- Benthos Collection Benthic organisms were collected from two square-foot Surber samples at the site. The samples averaged 24 organisms, 0.3 ml. volumetric displacement, and represented 12 different taxa.

Fish Collected:


Species	No.	% by No.	Wt.	% by Wt.
Largemouth bass Smallmouth bass Rock bass Bleugill Redbreast sunfish Longear sunfish Redear sunfish Warmouth Sunfish hybrid	31 30 40 51 12	0.5 0.2 0.5 6.8 1.0 0.9 0.2 0.2	1.35 0.02 0.75 1.09 0.43 0.14 0.02 0.07	7.5 0.1 4.2 6.0 2.4 0.8 0.1 0.4
Nongame Fish Forage Fish	74 449	12.6 76.8	9.82 4.29	54.4 23.5
Total	585		18.04	

Comments - This stream was surveyed in conjuction with the lower Tellico River sampling, as we were in the area and had time to conduct an additional survey. The sampling was done primarily to develop a fish species diversity list and collect stream information for TADS.

A variety of game fish was collected from Cane Creek. These included largemouth bass (Micropterus salmoides), smallmouth bass (M. dolomieui), rock bass (Ambloplites rupestris), warmouth (Lepomis gulosus), redear sunfish (L. microlophus), longear sunfish (L. megalotis), redbreast sunfish (L. auritus), and bluegill (L. macrochirus). Bluegill made up about 65% of the total number of game fish collected and two bluegill/redear sunfish hybrids were noted. Also of interest is the presence of the native longear sunfish along with the exotic redbreast sunfish which appears to be replacing the longear in much of the upper Tennessee River drainage (Etnier et al. 1983). We collected almost equal numbers of the two species.

Although widely distributed, two species not commonly encountered in east Tennessee streams, the dusky darter (*Percina sciera*) and northern studfish (*Fundulus catenatus*) were also collected from Cane Creek. A total of 29 fish species was collected.

Benthic macroinvertebrates from our samples included representatives of Baetidae, Baetiscidae, Caenidae, and Oligoneuriidae mayflies, Hydropsychidae and Polycentropodidae caddisflies, and Elmidae and Psephenidae beetles. Asian clams (Corbicula fluminea) and the river snail (Pleurocera unciale) were also present.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

Α.	LOC	CATION
	Wat	ershed Little Tennessee River Lat-Long 352530N - 841533W
	Str	eam Cane Creek Length of Sample 300
	Are	a or Station Belltown Rd. BridgeReach 06010704-14.0
	Cou	nty Monroe Date/Time 21 October 1987/1830
	Dat	a Collected By R. Bivens, D. Lane, C. Ellison, and D. Pollard
в.	PHY	SICAL CHARACTERISTICS
	1.	Average Width 18.7' Average Depth 0.9' Maximum Depth 2.3'
	2.	Estimated Percent of Stream in Pools is40 %
	3.	Estimated Percent Pool Bottom is Mud 5 % Silt 15 % Sand 20 %
		Clay - % Gravel 10 % Rubble 30 % Boulders 20 %
		Bedrock - % Other - %
·	4.	Estimated Percent Riffle Bottom is Mud 5 % Silt 15 % Sand 20 %
		Bedrock - % Other Rubble 40% Gravel 10% Boulders 10%
	5.	Abundance of Littoral Aquatic Plants is Numerous
		Average Scarce X
	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in 45 %
		of stream, Average in 40 %, Poor in 15 %.
	7.	Shade or Canopy Good over 60 % of Stream.
	8.	Flow (c.f.s.) 5.4 : Flow compared to Normal: Low X Normal High
	9.	D.O. 8.3 ppm Temp. 55 F % Saturation 78
. 1	.0.	Present Weather Partly cloudy, cool and windy; air temp. 52°F.
1	1.	Past Weather (last 24 hours) Cloudy with showers and cold overnight.
. 1	2.	D.O. <u>8.3 pH 7.1 Temp. 55 Conductivity 118</u>
1	3.	Comments: Sample location at the bridge on Belltown Road, 150'
		above and 150' below the bridge, at old Belltown Mill.

TENNESSEE WILDLIFE RESOURCES AGENCY

· ·	er Mile Mor			***************************************	06010704			
	ing Electro				ation_82	l'		,
	o backpack de at 350 v		rs	Time 16	30-1715	· ····		
Bide by Bi	SPECIES	, AU	T		T			
Name	Gr EGTEG	CODE	NUMBER	LENGTH	WT.	*	*	*
<i>licropterus</i>	salmoides	220	11	9	0.35			
"	11	11	1	1.0	0.4			
н	n	Ħ	1	11	0.6			
locropterus	dolomieui	218	1	3	0.02			
mbloplites	rupestris	13	1	6	0.18			
u	11	11	1	7	0.2			
"	"	lt	1	8	0.37			
epomis gul	osus	204	1.	5	0.07			
epomis mic		209	1	l _l	0.02			
epomis meg	alotis	208	1	2	0.01			
n	n	11	2	3	0.04			
п	11	11	2	14	0.09			
epomis aur	i tus	201.	1	2	t			
11	"	11	1	3	0.02			
. "	"	11	2	4	0.08			
11	11	11	1	5	0.07			
11	n	11	1	7	0.26			
epomis mac	rochirus	206	4	2	0.02			
11	"	t1	18	3	0.3			
11	"	11	7	14	0.16			
11	n .	TT.	10	5	0.46			
11	11	11	1	6	0.15			
epomis aur	itus x							
	acrochirus		1	4	0.04			
"	n		1.	3	0.02			
	meter Listed 300' samp			on next	page			

TENNESSEE WILDLIFE RESOURCES AGENCY

Reach 06010704-14,0	Body of Water Cane Cree	k	•	Date 21	October	1987		
Time	County or River Mile Mon	roe		Reach	06010704	-14,0		
STECIES	Type of Sampling Electr	ofishir	ng	Pool Elev	ation8	21'		
Name			?S	Time 16	30-1715	······································		
Tetalurus natalis	SPECIES		NUMBER	LENGTH	WT.	*	*	*
### ##################################			1	7	0.1	-		
Moss toma duquesnei 229 36 5-10 4.98 Moss toma erythrurum 230 3 3-6 0.15 Campos toma anomalum 25 255 2-5 2.5 Hybopsis amblops 155 1 3 t Nocomis micropogon 234 5 5-8 0.5 Notropis chrysocephalus 249 24 3-5 0.34 Notropis chrysocephalus 249 24 3-5 0.34 Notropis coccogenis 248 43 2-4 0.3 Notropis galacturus 253 13 1-3 0.04 Notropis spilopterus 269 6 2-3 0.01 Notropis telescopus 272 1 2 t Rhinichthys atratulus 351 1 2 t Fundulus catenatus 137 14 1-3 0.06 Etheostoma blennicides 81 1 3 t Etheostoma simoterum 111 28 2 0.07 Percina caprodes 306 37 3-4 0.29			26	5-12	4.45			
Moxostoma erythrurum 230 3 3-6 0.15 Campostoma anomalum 25 255 2-5 2.5 Hybopsis amblops 155 1 3 t Nocomis micropogon 234 5 5-8 0.5 Notropis chrysocephalus 249 24 3-5 0.34 Notropis coccogenis 248 43 2-4 0.3 Notropis galacturus 253 13 1-3 0.04 Notropis spilopterus 269 6 2-3 0.01 Notropis telescopus 272 1 2 t Rhinichthys atratulus 351 1 2 t Fundulus catenatus 137 14 1-3 0.06 Etheostoma blennioides 81 1 3 t Etheostoma rufilineatum 108 8 2 0.03 Etheostoma simoterum 111 28 2 0.07 Percina caprodes 306 37 3-4 0.29 Percina sciera 317 1 3 t Cottus carolinae 40 11 2-4 0.15 Lampetra appendix 192 8 6-7 0.14 * Label Parameter Listed * 7 adults and 1 ammocoetes.		229	36	5-10	4.98			
Campostoma anomalum 25 255 2-5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.								
### ### ##############################			····					
Nocomis micropogon 234 5 5-8 0.5		······································		· · · · · · · · · · · · · · · · · · ·	t			
Notropis chrysocephalus 249 24 3-5 0.34 Notropis coccogenis 248 43 2-4 0.3 Notropis galacturus 253 13 1-3 0.04 Notropis spilopterus 269 6 2-3 0.01 Notropis telescopus 272 1 2 t Rhinichthys atratulus 351 1 2 t Fundulus catenatus 137 14 1-3 0.06 Etheostoma blennicides 81 1 3 t Etheostoma rufilineatum 108 8 2 0.03 Etheostoma simoterum 111 28 2 0.07 Percina caprodes 306 37 3-4 0.29 Percina sciera 317 1 3 t Cottus carolinae 40 11 2-4 0.15 Lampetra appendix 192 8 6-7 0.14 * Label Parameter Listed * 7 adults and 1 ammocoetes.		· · · · · · · · · · · · · · · · · · ·	5		0.5			
Notropis coccogenis 248 43 2-4 0.3 Notropis galacturus 253 13 1-3 0.04 Notropis spilopterus 269 6 2-3 0.01 Notropis telescopus 272 1 2 t Rhinichthys atratulus 351 1 2 t Fundulus catenatus 137 14 1-3 0.06 Etheostoma blennicides 81 1 3 t Etheostoma rufilineatum 108 8 2 0.03 Etheostoma simoterum 111 28 2 0.07 Percina caprodes 306 37 3-4 0.29 Percina sciera 317 1 3 t Cottus carolinae 40 11 2-4 0.15 Lampetra appendix 192 8 6-7 0.14 * Label Parameter Listed * 7 adults and 1 ammocoetes.	77							
Notropis galacturus 253 13 1-3 0.04 Notropis spilopterus 269 6 2-3 0.01 Notropis telescopus 272 1 2 t Rhinichthys atratulus 351 1 2 t Fundulus catenatus 137 14 1-3 0.06 Etheostoma blennioides 81 1 3 t Etheostoma rufilineatum 108 8 2 0.03 Etheostoma simoterum 111 28 2 0.07 Percina caprodes 306 37 3-4 0.29 Percina sciera 317 1 3 t Cottus carolinae 40 11 2-4 0.15 Lampetra appendix 192 8 6-7 0.14 * Label Parameter Listed * 7 adults and 1 ammocoetes.					1			
Notropis spilopterus 269 6 2-3 0.01 Notropis telescopus 272 1 2 t Rhinichthys atratulus 351 1 2 t Fundulus catenatus 137 14 1-3 0.06 Etheostoma blennioides 81 1 3 t Etheostoma rufilineatum 108 8 2 0.03 Etheostoma simoterum 111 28 2 0.07 Percina caprodes 306 37 3-4 0.29 Percina sciera 317 1 3 t Cottus carolinae 40 11 2-4 0.15 Lampetra appendix 192 8 6-7 0.14 * Label Parameter Listed * 7 adults and 1 ammocoetes.		253	13	1-3	0.04			
Notropis telescopus		269	6	2-3	0.01			
### Rhinichthys atratulus 351 1 2 t		272	1	2	t			
Fundulus catenatus 137 14 1-3 0.06 Etheostoma blennioides 81 1 3 t Etheostoma rufilineatum 108 8 2 0.03 Etheostoma simoterum 111 28 2 0.07 Percina caprodes 306 37 3-4 0.29 Percina sciera 317 1 3 t Cottus carolinae 40 11 2-4 0.15 Lampetra appendix 192 8 6-7 0.14 * Label Parameter Listed * 7 adults and 1 ammocoetes.		351	1.	2	t			
Etheostoma blennioides 81 1 3 t Etheostoma rufilineatum 108 8 2 0.03 Etheostoma simoterum 111 28 2 0.07 Percina caprodes 306 37 3-4 0.29 Percina sciera 317 1 3 t Cottus carolinae 40 11 2-4 0.15 Lampetra appendix 192 8 6-7 0.14 * Label Parameter Listed * 7 adults and 1 ammocoetes.		137	14	1-3	0.06			
Etheostoma rufilineatum 108 8 2 0.03 Etheostoma simoterum 111 28 2 0.07 Percina caprodes 306 37 3-4 0.29 Percina sciera 317 1 3 t Cottus carolinae 40 11 2-4 0.15 Lampetra appendix 192 8 6-7 0.14 * Label Parameter Listed * 7 adults and 1 ammocoetes.		s 81	1	3	t			
Etheostoma simoterum		0	8	2	0.03			
Percina sciera 317 1 3 t Cottus carolinae 40 11 2-4 0.15 Lampetra appendix 192 8 6-7 0.14 * Label Parameter Listed * 7 adults and 1 ammocoetes.			28	2	0.07			
Percina sciera 317 1 3 t Cottus carolinae 40 11 2-4 0.15 Lampetra appendix 192 8 6-7 0.14 * Label Parameter Listed * 7 adults and 1 ammocoetes.	Percina caprodes	306	37	3-4	0.29			
Cottus carolinae 40 11 2-4 0.15 Lampetra appendix 192 8 6-7 0.14 * Label Parameter Listed * 7 adults and 1 ammocoetes.		317	1	3	t			1
Lampetra appendix 192 8 6-7 0.14 * Label Parameter Listed * 7 adults and 1 ammocoetes.		40	11	2-4	0.15			
* Label Parameter Listed * 7 adults and 1 ammocoetes.		192	_8	6-7	0.14			
· · · · · · · · · · · · · · · · · · ·								
	* Label Parameter Listed	* 7 :	adults :	and lam	mocoetes	······		

Cane Creek: Edge Surber sample

21 October 1987

Field # 079

Monroe Co., TN; Bridge on Belltown Road at Belltown Mill. Coordinates: 352530N - 841516W. Mount Vernon, Tenn., # 132 NE Quad. Reach # 06010704-14,0.

TAXA	NUMBER
COLEOPTERA: Elmidae/Stenelmis adult	1
DIPTERA: Chironomidae larvae pupa	6 1
EPHEMEROPTERA: Baetidae/Baetis Baetiscidae/Baetisca gibbera Caenidae/Caenis	1 1 1
TRICHOPTERA: Hydropsychidae/Cheumatopsyche	1
	12

Volumetric Displacement was 0.15 ml.

Cane Creek: Midstream Surber sample

21 October 1987

Field # 079

Monroe Co., TN; Bridge on Belltown Road at Belltown Mill. Coordinates: 352530N - 841516W. Mount Vernon, Tenn., # 132 NE Quad. Reach # 06010704-14,0.

TAXA	NUMBER
COLEOPTERA: Elmidae/Optioservus larvae	2
DIPTERA: Chironomidae	2
EPHEMEROPTERA: Oligoneuriidae/ <u>Isonychia</u>	1
GASTROPODA: Pleuroceridae/Pleurocera unciale	23
MEGALOPTERA: Corydalidae/Nigronia serricornis	1
PELECYPODA: Corbiculidae/Corbicula fluminea	5
TRICHOPTERA: Hydropsychidae/Cheumatopsyche Polycentropodidae/Polycentropus	1
	36

Volumetric Displacement was 0.35 ml.

Ninemile Creek

One qualitative fishery survey was conducted in July 1987:

Location and Length - Tributary to the Little Tennessee River (Tellico Reservoir). The sample area was located at the Garland Road Bridge at Highway 129 and was sampled on 2 July 1987. It was 400 ft. in length and averaged 30.1 ft. in width. The site was in Blount County. Tallassee Quadrangle.

Gear Type - The site was sampled using backpack electrofishing equipment. Two shockers were operated side by side at 110 v. AC. Five seine hauls, using a 30 ft. seine in combination with a backpack shocker, were also made due to the turbidity of the stream.

Water Quality - Data were taken from midstream with a 4041 Hydrolab.
On 2 July 1987: DO - 8.6 ppm, pH - 7.3, Temperature - 72.0 F,
Conductivity - 240 microchos/cm.

Benthos Collection - Benthic organisms were collected from two square-foot Surber samples at the site. The samples averaged 60 organisms, 1.5 ml. volumetric displacement, and represented 14 different taxa.

Fish Collected:


Species	No.	% by No.	Wt.	% by Wt.
Largemouth bass	3	0.9	3.2	11.5
Rock bass	9	2.8	1.1	4.4
Bluegill	3	0.9	0.2	0.8
Redbreast sunfish	40	12.5	0.8	3.2
Nongame Fish	54	16.9	16.15	54.6
Forage Fish	211	65.9	3.6	14.4
Total	320		25.05	

Comments - This stream was surveyed primarily to develop a fish species diversity list and collect stream information for TADS. Game fish from our sample included largemouth bass (Micropterus salmoides), rock bass (Ambloplites rupestris), bluegill (Lepomis macrochirus), and redbreast sunfish (L. auritus). Redbreast sunfish were the principle game fish

and they made up about 13% of the total number of fish collected. However, three largemouth bass made up over 11% by weight while redbreast sunfish made up only about 3% of the total weight.

The stream is fairly turbid and sampling was difficult. It receives heavy siltation mainly from agricultural sources all along the watershed. We collected a total of 17 fish species, most of which are species components of streams that exhibit typical non-point-source pollution.

Benthic macroinvertebrates from our samples included Baetidae Heptageniidae, and Oligoneuriidae mayflies, Hydropsychidae and Hydroptilidae caddisflies, chironomids, and the perlid stonefly Paragnetina media. Asian clams (Corbicula fluminea) and the river snail Pleurocera unciale were also present.

TENNESSEE WILDLIFE RESOURCES AGENCY-PHYSIOCHEMICAL STREAM SURVEY FORM

Α.	T	Λ	C.	Δ	77	T	Λ	N
<i>n</i> .	L	U	u.	n	. 1	I.	v	ŤΑ

	Was	tershed Little Tennessee River Lat-Long 353622N - 840548W
	St	ream Ninemile Creek Length of Sample 400'
	Are	ea or Station Garland Rd. Bridge Reach 06010204-42.0
	Cou	inty Blount Date/Time 2 July 1987/1030
	Dat	a Collected By Rick D. Bivens, David Lane, and Chester J. Ellison
В.	РНХ	SICAL CHARACTERISTICS
•	1.	Average Width 30.1' Average Depth 0.8' Maximum Depth 3.1'
	2.	Estimated Percent of Stream in Pools is
	3.	Estimated Percent Pool Bottom is Mud 20 % Silt 30 % Sand 30 %
		Clay 10 % Gravel 5 % Rubble 5 % Boulders _ %
		Bedrock - % Other - %
	4.	Estimated Percent Riffle Bottom is Mud 10 % Silt 20 % Sand 20 %
		Bedrock 20 % Other Rubble 20% Gravel 10%
	5.	Abundance of Littoral Aquatic Plants is Numerous
		Average X Scarce
(6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in 50 %
		of stream, Average in 30 %, Poor in 20 %.
	7.	Shade or Canopy Good over
8	3.	Flow (c.f.s.) 17.3 : Flow compared to Normal: Lów X Normal High
(9.	D.O. 8.6 ppm Temp. 72.0°F % Saturation 98
10).	Present Weather Partly cloudy, hot, and humid.
11	L.	Past Weather (last 24 hours) Partly cloudy with showers.
12	2.	D.O. <u>8.6</u> pH <u>7.3</u> Temp. <u>72.0</u> Conductivity <u>240</u>
13	3.	Comments: Sample location above and below Garland rd. bridge at hwy.
		129 (Garland rd. is Kyker rd. on Co. map). Stream is very silty
		and turbid. Watershed used for agriculture; cattle in stream. etc.

FISH FIELD DATA FORM

TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Little Tennessee River Lat-Long 353622N - 840548W

Body of Water Ninemile Creek Date 2 July 1987

County or River Mile Blount Reach 06010204-42,0

Type of Sampling Electrofishing Pool Elevation 853*

Gear Type Two backpack shockers side Time 1200-1330

C	PECIES							
Name	FECIES	CODE	NUMBER	LENGTH	WT.	*	*	*
Ambloplites r	rupestris	13	2	2	t			
11	11	11	1	3	t			
n .	11	11	2	4	0.1			
II .	11	1!	3	7	0.6			
n	11	11	1	9	0.4			
dicropterus s	salmoides	220	1.	1.3	1.2			
п	11	71].	15	1.6			
11	11	11	1	10	0.4			
Lepomis aurit	us	201	23	2	0.1			
11 11		īī	11	3	0.2			Ì
n n		11	3	4	0.1			
11 11		tī	2	5	0.2			
n n		11	1	6	0.2			
Lepomis macro	chirus	206	1	3	0.05			
11	11	11	1.	4	0.05			
ti .	11	tt	1.	5	0.1			
loxostoma duq	uesnei	229	1	14	0.9			
Moxostoma ery	thrurum	230	12	4-16	3.5			
Campostoma an	iomalum	25	43	2-7	1.6			
Cyprinus carp	io	47	2	19-21	7.15			
Vocomis micro	pogon	234	5	6-9	0.8			ļ
lotropis chry	socephali	s 249	32	2-5	0.4			ļ
lotropis cocc	ogenis	248	8	1-4	0.1			
								ļ
	Continued	on	next	page			}	<u> </u>

^{*} Label Parameter Listed

Field Notes: Water was turbid; made 1 pass with 2 shockers side by side, then went back and made 5 seine hauls with shocker; 400' sample length.

Name of Collector(s): Rick D. Bivens, David Lane, and Chester J. Ellison

WR-6525

FISH FIELD DATA FORM

TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Little Tennessee River			Lat-Long 353622N - 840548W					
Body of Water Ninemile		Date 2 July 1987						
County or River Mile Blo	unt		Reach 06010204-42,0					
Type of Sampling Electr	ofishin	g	Pool Elevation 853'					
Gear Type Two backpack by side, 110	shocker v. AC	s side						
SPECIES Name	CODE	NUMBER	LENGTH	WT.	*	*	*	
Etheostoma blennioide	81	57	1-4	0.35				
Etheostoma simoterum	111	19	2	0.05				
Cottus carolinae	40	46	1-3	0.3				
Gambusia affinis	147	1	2	t				
Hypentelium nigricans	166	37	1-13	4.6				
Ichthyomyzon sp.								
ammocoetes	_	2	8	t				
				<u>_</u>				
, , , , , , , , , , , , , , , , , , ,								
· · · · · · · · · · · · · · · · · · ·				,				
			<u> </u>					
	-							
* Label Parameter Listed	······································		· · · · · · · · · · · · · · · · · · ·			<u> </u>		
Field Notes:								
Name of Collector(s): Ri	ck D B	ivens	David La	ne. and (Chester	J. Ell	ison	

WR-0525

Ninemile Creek: Edge Surber sample

2 July 1987

Field # 045

Blount Co., TN; Garland Road bridge at U.S. Hwy. 129. Coordinates: 353622N - 840548W. Tallassee, Tenn., # 139 SE Quad. Reach # 06010204-42,0.

TAXA	NUMBER
DIPTERA: Unidentified adult	1
Chironomidae Empididae	1 1
EPHEMEROPTERA: Baetidae/Baetis Heptageniidae/Stenacron Stenonema	3 2 11
Oligoneuriidae/ <u>Isonychia</u>	3
GASTROPODA: Pleuroceridae/Pleurocera unciale	14
MEGALOPTERA: Corydalidae/Corydalus cornutus	2
TRICHOPTERA: Hydroptilidae/Hydroptila	1
	42

Volumetric Displacement was 1.0 ml.

Ninemile Creek: Midstream Surber sample

2 July 1987

Field # 045

Blount Co., TN; Garland Road bridge at U.S. Hwy. 129. Coordinates: 353622N - 840548W. Tallassee, Tenn., # 139 SE Quad. Reach # 06010204-42,0.

TAXA	NUMBER
DIPTERA: Chironomidae Tipulidae/Antocha	8
EPHEMEROPTERA: Baetidae/Baetis Heptageniidae/Stenonema Oligoneuriidae/Isonychia	2 44 3
GASTROPODA: Pleuroceridae/Pleurocera unciale	2
MEGALOPTERA: Corydalidae/Corydalus cornutus	1
PELECYPODA: Corbiculidae/Corbicula fluminea	2
PLECOPTERA: Perlidae/Paragnetina media	2
TRICHOPTERA: Hydropsychidae/Cheumatopsyche Hydropsyche betteni/depravata	9 3
	77

Volumetric Displacement was 2.0 ml.

Dumplin Creek

Two qualitative fishery surveys were conducted in December 1986:

- Location and Length Tributary to the French Broad River. Sample area 1 was at the bridge on Douglas Dam Road at Kodak and was sampled on 4 December 1986. The sample area was 600 ft. in length and averaged 24.7 ft. in width. Sample area 2 was upstream of the Highway 25W and 70 bridge and was sampled on 3 December 1986. The sample area was 500 ft. in length and averaged 16.4 ft. in width. Area 1 was in Sevier County; Douglas Dam Quadrangle. Area 2 was in Jefferson County; Jefferson City Quadrangle.
- Gear Type Both sites were sampled using backpack electrofishing equipment. Each area was sampled using a single shocker operating at 110 v. AC.
- Water Quality Data were taken from midstream with a 4041

 Hydrolab. Area 1, on 4 December 1986: DO 10.9 ppm,

 pH 7.9, Temperature 46.9 F, Conductivity 426 micromhos/cm.

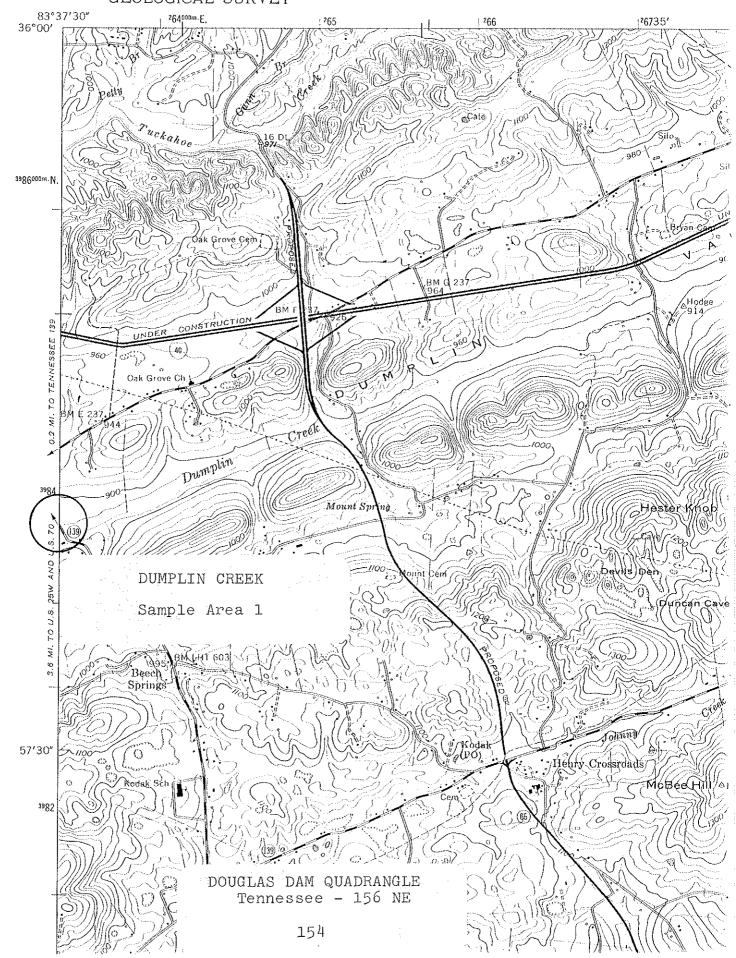
 Area 2, on 3 December 1986: DO 10.9 ppm, pH 7.8,

 Temperature 50.0 F, Conductivity 418 micromhos/cm.
- Benthos Collection Benthic organisms were collected from two square-foot Surber samples at each site. Area 1 averaged 71 organisms, 0.5 ml. volumetric displacement, and represented 19 different taxa. Area 2 averaged 317 organisms, 4.0 ml. volumetric displacement, and represented 22 different taxa.

Fish Collected:

TIOTI COLLECTION.	Area 1				Ar	ea 2		
Species	No.	% by No.	Wt.	% by Wt.	No.	% by No.	Wt.	% by Wt.
Rock bass Bluegill Redbreast sunfish	12 3 2	3,3	2.25 0.15 t	46.4 3.1	3	0.8	0.05	1.2
Nongame Fish Forage Fish	12 62		1.9 0.55		29 324		2.05	50.0 48.8
Total	91		4.85		356		4.1	

Comments - This stream was surveyed primarily to develop a fish species diversity list and collect stream information for TADS. Game fish from both sites included rock bass (Ambloplites


rupestris), bluegill (Lepomis macrochirus), and redbreast sunfish (L. auritus). Rock bass and bluegill were collected only from the lower area while redbreast sunfish were collected from both sites. This stream also has a history of trout stocking from private applications, however, we found no trout in the areas sampled. It receives fairly heavy siltation, primarily from agricultural sources, and trash dumping occurs along the stream course. We collected a total of 14 fish species from both sites combined.

It is interesting to note the occurrence of the fathead minnow (*Pimephales promelas*) at the upper collection site. The fathead minnow is not a common fish in Tennessee streams, but scattered specimens have been taken in all drainages in the state where releases from bait buckets probably create temporary or persistent populations (Etnier and Starnes 1980).

The upper stream reach may be a good site to try to reestablish the native longear sunfish (*L. megalotis*) which has been replaced in much of the upper Tennessee River drainage by the exotic redbreast sunfish (Etnier et al. 1983).

Benthic macroinvertebrates from the lower sample area included Brachycentridae, Hydropsychidae, Hydroptilidae, Limnephilidae, Philopotamidae, and Psychomyiidae caddisflies, Stenonema mayflies, elmid riffle beetles, and Taeniopteryx stoneflies. The periwinkle snail (Goniobasis simplex) was also present. Surber samples from the upper site averaged 317 organisms. These included Ephemerellidae, Ephemeridae, Heptageniidae, Leptophlebiidae, and Oligoneuriidae mayflies, Hydropsychidae and Philopotamidae caddisflies, and Perlidae, Perlodidae, and Taeniopterygidae stoneflies.

UNITED STATES OF THE INTERIOR GEOLOGICAL SURVEY

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

Α.	LO	CA'	r T	ΩN

	Wat	ershead French Broad River Lat-Long 355813N - 833729W									
	Str	ream Dumplin Creek Length of Sample 600'									
	Area or Station Site # 1 Reach 06010107-38,0										
	County Sevier Date/Time 4 December 1986/1045										
	Dat	a Collected By Rick D. Bivens and Chester J. Ellison									
3.	PHY	HYSICAL CHARACTERISTICS									
	1.	Average Width 24.7! Average Depth 0.9! Maximum Depth 3.7!									
٠	2.	Estimated Percent of Stream in Pools is 30 %.									
	3.	Estimated Percent Pool Bottom is Mud 10 % Silt 20 % Sand 40 %									
		Clay 10 % Gravel 10 % Rubble 10 % Boulders - %									
		Bedrock - % Other - %									
	4.	Estimated Percent Riffle Bottom is Mud 10 % Silt 20 % Sand 20 %									
		Bedrock - % Other Rubble 50%									
	5.	Abundance of Littoral Aquatic Plants is Numerous									
		Average Scarce X									
	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in 30 %									
		of Stream, Average in 40 %, Poor in 30 %									
	7.	Shade or Canopy Good over 30 % of Stream; Interferes some									
		(degree) with any (type) of fishing.									
	8.	Flow (c.f.s.) 19.6 : Flow compared to Normal: Low Normal X High									
	9.	D.O. 10.9 ppm Temp. 46.9°F % Saturation 94									
1	.0.	Present Weather Clear and cool, air temp. 40°F									
1	.1.	Past Weather (last 24 hours) Partly cloudy to clearing, cold overnight									
]	.2.	D.O. 10.9 pH 7.9 Temp. 46.9 Conductivity 426									
1	.3:	Comments: Sample location at bridge on Douglas Dam Road at Kodak.									
		Stream is fairly silty. Several deep pools and good cover for									
		fish. Lot of sand present. Receives some trash dumping.									

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed French Broad River	Lat-Long 355813N - 833729W
Body of Water Dumplin Creek	Date 4 December 1986
County or River Mile Sevier	Reach 06010107-38,0
Type of Sampling Electrofishing	Pool Elevation 772'
Gear Type Backpack Shocker	Time 1215-1330
600' sample length	

SP Name	ECIES	CODE	NUMBER	LENGTE	wr.	*	*	*
Ambloplites r	upestris	13	3	3	t			
11	!!	††	3	5	0.25	-		
11	11	11	1	6	0.1	:		
\$1	Ħ	11	1	7	0.2	l i		
?1	!1	ts	2	8	0.6			1
11	tt	11	2	9	1.1			
Lepomis aurit	นร	201	2	3	t			
Lepomis macro	chirus	206	2	4	0.1			
11	11	11	1	5	0.05			
Hypentelium n	iaricans	166	12	3-10	1.9			
Campostoma an		25	2	4-5	0.05		:	
Hybopsis ambl	орв	155	3	1-3	t			
Notropis gala		253	1	4	t			
Notropis spil	opterus	269	1	3	t			
Etheostoma bl	ennioide	s 81	1	5	t			
Etheostoma si	moterum	111	10	2	t			1
Cottus caroli	nae	40	44	1 2-4	0.5			
<u></u>				!				
			1	!]
								;
			i	į				
				i				:
				i				!
			1					;

^{*} Label Parameter Listed

Field Notes: Few fish for the amount of effort; low numbers of fish. Saw a few rock bass escape capture.

Name of Collector(s): Rick D. Bivens and Chester J. Ellison

WR-0525

Dumplin Creek: Site # 1, Edge Surber sample

4 December 1986

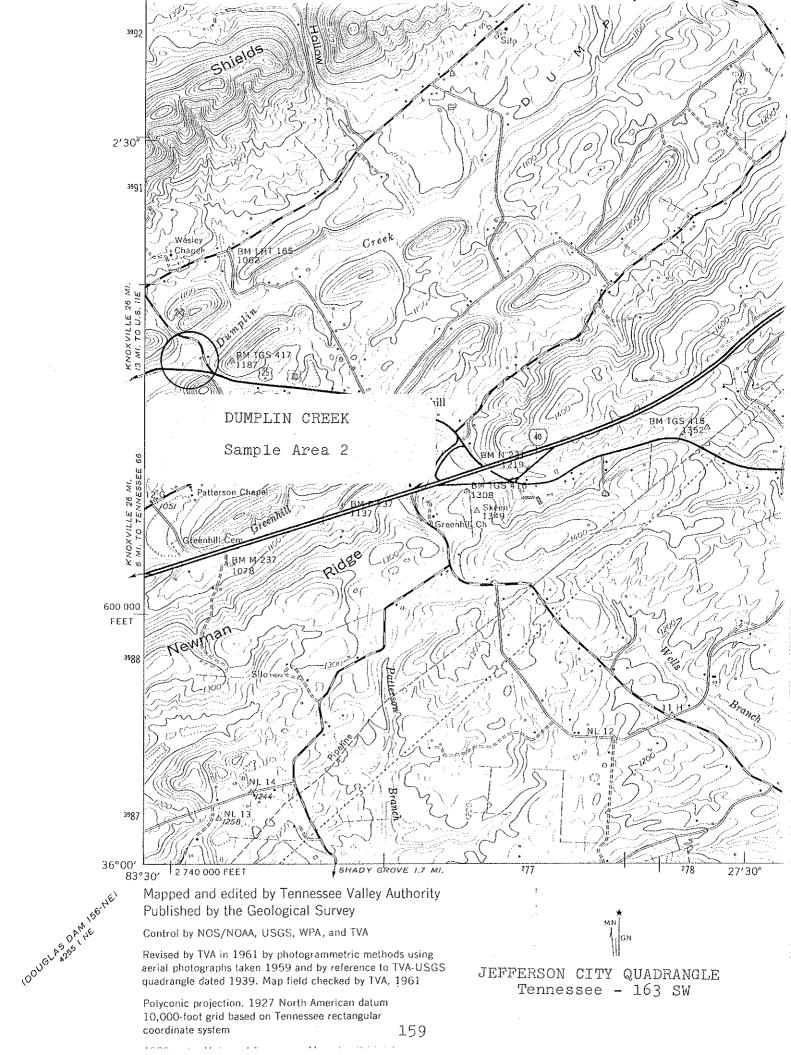
Field # 024

Sevier Co., TN; At bridge on Douglas Dam Road in Kodak. Coordinates: 355813N - 833729W. Douglas Dam, Tenn., # 156 NE Quad. Reach # 06010107-38,0.

TAXA	NUMBER
COLEOPTERA: Elmidae/Optioservus larva Promoresia tardella larvae Stenelmis adults	1 18 2
DIPTERA: Tipulidae/Antocha	6
EPHEMEROPTERA: Heptageniidae/Stenonema	11
ISOPODA: Asellidae/Lirceus	3
TRICHOPTERA: Hydropsychidae/Cheumatopsyche Hydropsyche Limnephilidae/Pycnopsyche Philopotamidae/Chimarra	3 3 1 1
	49

Volumetric Displacement was 0.5 ml.

Dumplin Creek: Site # 1, Midstream Surber sample


4 December 1986

Field # 024

Sevier Co., TN; At bridge on Douglas Dam Road in Kodak. Coordinates: 355813N - 833729W. Douglas Dam, Tenn., # 156 NE Quad. Reach # 06010107-38,0.

TAXA	NUMBER
COLEOPTERA: Elmidae/Optioservus larvae Promoresia tardella larvae Stenelmis adult	2 26 1
DIPTERA: Chironomidae Empididae Tipulidae/Antocha	3 1 7
EPHEMEROPTERA: Heptageniidae/Stenonema	5
GASTROPODA: Pleuroceridae/Goniobasis simplex	2
PLECOPTERA: Taeniopterygidae/Taeniopteryx	7
TRICHOPTERA: Unidentified pupa Brachycentridae/Micrasema Hydropsychidae/Cheumatopsyche Hydropsyche Hydroptilidae/Unidentified pupa Hydroptila Limnephilidae/Neophylax Psychomyiidae/Psychomyia flavida	1 3 9 13 1 9 1 2
	93

Volumetric Displacement was 0.5 ml.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

Α.	LOCATI	ON

Wa	atershead French Broad River Lat-Long 351933N - 833125W
	tream Dumplin Creek Length of Sample 500'
Ar	rea or Station Site # 2 Reach 06010107-38,0
Co	ounty Jefferson Date/Time 3 December 1986/1030
	ta Collected By Rick D. Bivens and Chester J. Ellison
B. PH	YSICAL CHARACTERISTICS
1.	Average Width 16.4' Average Depth 0.9' Maximum Depth 2.6'
2.	
3.	Estimated Percent Pool Bottom is Mud 40 % Silt 20 % Sand 5 %
	Clay 30 % Gravel 5 % Rubble - % Boulders - %
	Bedrock - % Other - %
4.	Estimated Percent Riffle Bottom is Mud 5 % Silt 10 % Sand 10 %
	Bedrock - % Other Rubble 75%
5.	Abundance of Littoral Aquatic Plants is Numerous
	Average Scarce X
6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in 40 %
	of Stream, Average in30%, Poor in30%
7.	Shade or Canopy Good over 70 % of Stream; Interferes somewhat
	(degree) with any (type) of fishing.
8.	Flow (c.f.s.) 9.4 : Flow compared to Normal: Low Normal X High
9.	D.O. 10.9 ppm Temp. 50.0°F % Saturation 95
10.	Present Weather Cloudy, overcast, cool, air temp. 42°F
11.	Past Weather (last 24 hours) Cloudy with light rain showers.
12.	D.O. 10.9 pH 7.8 Temp.50.0 Conductivity 418
13:	Comments: Sample location above Highway 25W & 70 bridge. The
	stream is fairly silty from agriculture practices and bank
	sloughing. Benthos population appears very good though.
	Considerable amount of trash dumping along stream course.

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed French Broad River	Lat-Long 351933N - 833125W
Body of Water Dumplin Creek	Date 3 December 1986
County or River Mile Jefferson	Reach 06010107-38,0
Type of Sampling Electrofishing	Pool Elevation 1010'
Gear Type Backpack Shocker	Time 1215-1315
500' sample length	

SPECIES	,,,,	······································				1	
Name	CODE	number	LENGTH	WI.	*	*	*
Lepomis auritus	201	3	2	0.05			
Catostomus commersoni	32	15	3-10	1.7			
Hypentelium nigricans	166	14	3-7	0.35			
Campostoma anomalum	25	138	2-5	1.25			
Pimephales promelas	335	2	3	t			
Rhinichthys atratulus	351	117	1-4	0.5	1		
Semotilus atromaculat	us 360	8	2-5	0.15			
Etheostoma simoterum	111	58	2	0.1			
Cottus carolinae	40	1	4	t			
			İ				
						1	
	<u></u>	<u> </u>	1				
<u> </u>							1
						1	,
		<u>; </u>					
					}		
							!
<u> </u>						 	i i
]	:		
		1	<u> </u>				
· · · · · · · · · · · · · · · · · · ·	w]	<u> </u>	1		İ	
		l]		

* Label Parameter Listed

Field Notes:	No rock	bass col	lected.	Stream is	used	mostly	for bait	collection
according	to a loca	l reside	nt. Bent	thos popul	ation	is very	abundant	
Name of Coll	ector(s):	Rick D.	Bivens a	and Cheste	r J. E	Ellison		

WR-0325

Dumplin Creek: Site # 2, Edge Surber sample

3 December 1986

Field # 023

Jefferson Co., TN; Just upstream of hwy. 25W & 70 bridge. Coordinates: 360146N - 832948W. Jefferson City, Tenn., # 163 SW Quad. Reach # 06010107-38,0.

TAXA	NUMBER
COLEOPTERA: Elmidae/Stenelmis adults Psephenidae/Psephenus herricki	3
DIPTERA: Chironomidae Simuliidae pupa Tabanidae/Tabanus Tipulidae/Antocha	4 1 1 2
EPHEMEROPTERA: Ephemerellidae/Serratella Ephemeridae/Ephemera Heptageniidae/Heptagenia Stenonema Leptophlebiidae/Paraleptophlebia Oligoneuriidae/Isonychia	2 3 5 176 1 41
ISOPODA: Asellidae/Lirceus	2
MEGALOPTERA: Corydalidae/Nigronia serricornis Sialidae/Sialis	1
PLECOPTERA: Perlidae/Paragnetina media	1
TRICHOPTERA: Hydropsychidae/Cheumatopsyche Hydropsyche Philopotamidae/Chimarra	66 2 25
	338

Volumetric Displacement was 4.5 ml.

Dumplin Creek: Site # 2, Midstream Surber sample

3 December 1986

Field # 023

Jefferson Co., TN; Just upstream of hwy. 25W & 70 bridge. Coordinates: 360146N - 832948W. Jefferson City, Tenn., # 163 SW Quad. Reach # 06010107-38,0.

TAXA	NUMBER
COLEOPTERA: Psephenidae/Psephenus herricki	3
DIPTERA: Unidentified pupae Chironomidae Tabanidae/Tabanus Tipulidae/Antocha	2 7 1 8
EPHEMEROPTERA: Heptageniidae/Heptagenia Stenonema Oligoneuriidae/Isonychia	1 102 26
ISOPODA: Asellidae/ <u>Lirceus</u>	4
MEGALOPTERA: Sialidae/Sialis	1
PLECOPTERA: Perlidae/ <u>Paragnetina media</u> Perlodidae/ <u>Isoperla</u> Taeniopterygidae/ <u>Taeniopteryx</u>	1 1 1
TRICHOPTERA: Hydropsychidae/Cheumatopsyche Hydropsyche betteni/depravata Philopotamidae/Chimarra	85 5 48
	296

Volumetric Displacement was 3.5 ml.

Nolichucky River

Two qualitative fishery surveys were conducted in October 1987:

- Location and Length Sample area 1 was 0.3 mi. upstream of the mouth of Bent Creek, at Nolichucky River mi. 15.15, and was sampled on 15 October 1987. The sample area was 700 ft. in length and averaged 253.7 ft. in width. Sample area 2 was at Bailey Bridge, Nolichucky River mi. 77.0, and was sampled on 16 October 1987. The sample area was 600 ft. in length and averaged 284.5 ft. in width. Site 1 was located at the Hamblen, Cocke, and Greene Counties line; Springvale Quadrangle. Site 2 was in Washington County; Telford Quadrangle.
- Gear Type Both sites were sampled using both boat and backpack electrofishing equipment. A shocker boat was used where deeper water permitted and shallow riffle areas were sampled with either a backpack shocker alone (Area 2) or a backpack shocker in combination with a 30 ft. seine (Area 1).
- Water Quality Data were taken from midstream with a 4041

 Hydrolab. Area 1, on 13 October 1987: DO 11.9 ppm,

 pH 8.3, Temperature 57.7 F, Conductivity 228 micromhos/cm.

 Area 2, on 14 October 1987: DO 11.2 ppm, pH 8.3,

 Temperature 54.5 F, Conductivity 105 micromhos/cm.
- Benthos Collection Benthic organisms were collected from two square-foot Surber samples at each site. Area 1 averaged 64 organisms, 1.7 ml. volumetric displacement, and represented 14 different taxa. Area 2 averaged 59 organisms, 1.1 ml. volumetric displacement, and represented 10 different taxa.

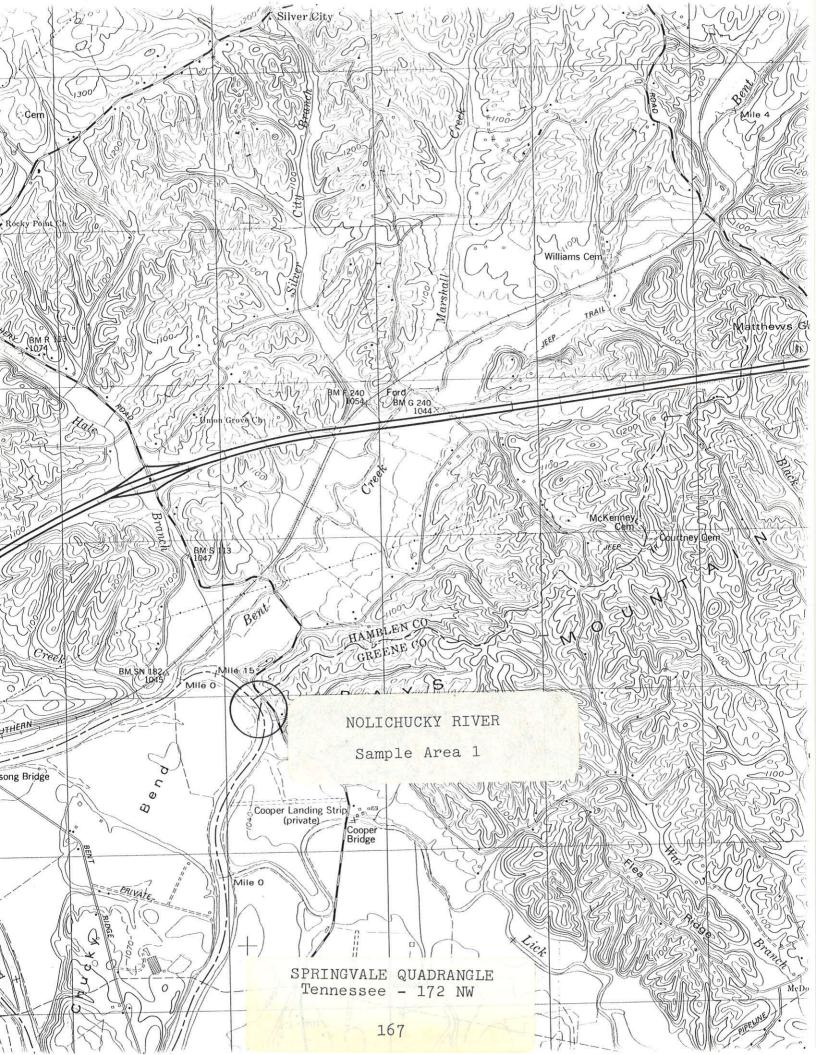
Fish Collected: (See accompanying table)

Comments - Two areas of the Nolichucky River were sampled primarily to update fishery data for the agency, develop a fish species diversity list, and collect stream information for TADS. One site was located downstream of Davy Crockett Dam, but upstream of the Enka Dam at Lowlands. The other site was located upstream of Davy Crockett Reservoir.

Game fish collected from both sites included smallmouth bass (Micropterus dolomieui), spotted bass (M. punctulatus), largemouth bass (M. salmoides), rock bass (Ambloplites rupestris), bluegill (Lepomis macrochirus), redbreast sunfish (L. auritus), warmouth (L. gulosus), redear sunfish (L. microlophus), white crappie (Pomoxis annularis), and black crappie (P. nigromaculatus). Smallmouth bass, spotted bass, rock bass, white crappie, redbreast sunfish, warmouth, and

redear sunfish were collected from both sites while largemouth bass, black crappie, and bluegill were collected from the upper site only. Also, channel catfish (*Icatlurus punctatus*) were collected at the downstream site while flathead catfish (*Pylodictis olivaris*) were collected from both sites.

The Nolichucky River has had a long history of pollution. Heavy siltation from extensive mica mining and sand and gravel dredging in North Carolina and the upper river tributaries along with municipal sewage and industrial pollution have all been documented (Mullican et al. 1960; Etnier 1973; McKinney et al. However, in recent years water quality has significantly improved and is reflected in our collections. We collected a total of 51 fish species from both sites combined. This is more than double the number reported in fish collections made in 1959 (Ward 1960). At that time, most were tolerant forms and low numbers of game fish were collected. Our sampling represented not only an increase in fish species diversity but also an increase in total numbers of fish collected. The lower Nolichucky (downstream of Davy Crockett) is known as an excellent smallmouth bass fishery and supports at least 5 species of threatened or endangered aquatic organisms. There is also evidence that the upper river segment is recovering based on the re-establishment of a smallmouth bass fishery (McKinney et al. 1981).


It is interesting to note the collection of one specimen of the highfin carpsucker (Carpiodes velifer) from our upper site. This is the first record of this fish from the state since 1975 when a juvenile was collected from the Douglas Dam tailwaters (Etnier and Starnes 1980). The highfin carpsucker was apparently fairly numerous in the Nolichucky in the late 1950s when as many as 26 were reportedly collected from one sample site (Ward 1960). The current status of this fish is termed "Deemed in Need of Management" by TWRA and of "Special Concern" by the Tennessee Heritage Program (Starnes and Etnier 1980). Our specimen was 13.9 in. TL and was donated to the University of Tennessee Research Collection of Fishes (UT 45.704).

Also of interest is the sharphead darter (Etheostoma acuticeps). Until the discovery of a population in the lower Nolichucky River in 1975, only 37 specimens had ever been collected, and the species was considered extinct (Bryant 1979). More recent collections of the sharphead darter from localities just above Davy Crockett Reservoir to upstream of Erwin remove it from any imminent threat of extinction (Etnier and Starnes 1980). Our recent collections indicated that this population is persisting in adequate numbers. We collected 65 from the lower site and 28 from the area upstream of Davy Crockett Reservoir.

Benthic macroinvertebrates from our samples included Baetidae, Heptageniidae, Oligoneuriidae, and Tricorythidae mayflies, Hydropsychidae caddisflies, chironomid and simuliid larvae and pupae, and the perlid stonefly *Phasganophora capitata*. Asian clams (*Corbicula fluminea*), and the river snail (*Anculosa subglobosa*) were also present.

Fish collected in two qualitative samples of the Nolichucky River.

	Area 1				<u>Area 2</u>				
Species	No.	% by	Wt.	% by Wt.	<u>No.</u>	% by	Wt.	% by Wt.	
Smallmouth bass Spotted bass Largemouth bass	11 14	1.5 1.9	1.28 3.45	2.0 5.5	11 6 5	0.8 0.4 0.3	1.11 0.23 1.19	2.1 0.4 2.3	
Rock bass White crappie Black crappie	1	0.1	0.29	0.5	1 1 2 20	0.1 0.1 0.1 1.4	0.18 0.49 1.15 1.12	0.3 0.9 2.2 2.1	
Bluegill Redbreast sunfish Warmouth Redear sunfish	4 1 1	0.6 0.1 0.1	t t 0.02		85 1 1	5.8 0.1 0.1	2.58 0.19 0.1	4.9 0.4 0.2	
Nongame Fish Forage Fish	52 639		54.15 3.83	85.9 6.1	85 1240	-	38.48 5.82	73.1 11.1	
Total	724		63.03		1458		53.64		

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

Α.	1.00	ALION									
	Wat	ershed Nolichucky River Lat-Long 361048N - 830957W									
	Str	eam Nolichucky River Length of Sample 700'									
	Are	a or Station Site # 1 Reach 06010108-4.0									
	Cour	nty Hamblen, Cocke, & Greene Date/Time 13 October 1987/1430									
	Dat	a Collected By Rick D. Bivens and Chester J. Ellison									
В.	PHY	SICAL CHARACTERISTICS									
	1.	Average Width 253.7' Average Depth 1.7' Maximum Depth 5,4'									
	2.	Estimated Percent of Stream in Pools is 30 %									
	3.	Estimated Percent Pool Bottom is Mud 10 % Silt 30 % Sand 20 %									
		Clay 5 % Gravel 5 % Rubble 10 % Boulders 10 %									
		Bedrock 10 % Other - %									
	4.	Estimated Percent Riffle Bottom is Mud 5 % Silt 10 % Sand 10 %									
		Bedrock 30 % Other Rubble 30% Gravel 5% Boulders 10%									
	5.	Abundance of Littoral Aquatic Plants is Numerous									
		Average X Scarce									
	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in 40%									
		of stream, Average in 40 %, Poor in 20 %.									
	7.	Shade or Canopy Good over 10 % of Stream.									
	8.	Flow (c.f.s.) 379.5 : Flow compared to Normal: Low X Normal High									
	9.	D.O. 11.9 ppm Temp. 57.7°F % Saturation 115									
	10.	Present Weather Clear, sunny, cool, and breezy; air temp 60°F.									
]	Ll.	Past Weather (last 24 hours) Partly cloudy and cold overnight.									
]	ί2.	D.O. 11.9 pH 8.3 Temp. 57.7 Conductivity 228									
1	13.	Comments: Sample location 0.3 ml. above the mouth of Bent Creek									
		at Nolichucky River mile 15.15, just off Fish Hatchery Road.									

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Nolichucky River	Lat-Long 361048N - 830957W
Body of Water Nolichucky River	Date 15 October 1987
County or River Mile Hamblen, Cocke,	Reach 06010108-4,0
Type of Sampling & Greene	Pool Elevation 1025'
Gear Type Boat and backpack	Time 1100-1200 and 1430-1530
electrofishing	· i

Name	SPECIES	CODE	NUMBER	LENGTH	wr.	*	*	*
Micropterus	dolomieui	218	3	3	0.02			
"	"	11	4	4	0.13			
11	//	f!	1	7	0.16			
n	11	11	1.	8	0.24			
71	11	11	1	9	0.31	<u></u>		
11	n	11	<u>)</u>	10	0.42			
<i>licropterus</i>	punctulat	us 219	2	3	0.01			
11	n	11	4	4	0.04			
11	"	11	1	6	0.13			Ì
17	n n	11	2	7	0.33			
TT .	"	11	1	8	0.24			
. #	n	וז	1	9	0.37			
11	"	tī	2	10	0.9			
77	"	11	1.	14	1.43			
omoxis anni	ılaris	343	1	4	0.01			İ
epomis auri		201	4	2	t !			l
epomis gulo	1	204	1	1	t			1
epomis micz		209	1	3	0.02			1
mbloplites		13	Э.	7	0.29			1
ctalurus pi	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	176	1	24	0.02			ļ
11	11	İī]_	8	0.15			
11	11	11	1.	17	1.8			i
11	"	11	1	18	2.35			
77	11	Ť1	2	1 20	5.85			:
TT.	"	T1	1	21	4.0			:

* Label Parameter Listed Continued on next page

Field Notes: 700' sample length.

Name of Collector(s): Rick Bivens, David Lane, Chester Ellison, Earl Seay, Daniel Pollard, and Stan Lambert WR-C525

FISH FIELD DATA FORM

TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Nolichucky F	Lat-Long 361048N - 830957W						
Body of Water Nolichuc	Date 15 October 1987						
County or River Mile Hamb	Reach 06010108-4,0						
Type of Sampling & Gr	Pool Elev	ation 10	025'				
Gear Type Boat and bac	Time 11	00-1200	and 143	0-1530			
electrofishi	ng	1		1			
SPECIES Name	CODE	NUMBER	LENGTH	WT.	*	*	*
Pylodictus olivaris	346	2	7	0.15			
n n	11	1	13	0.85			
11 11	11	1	1.8	2.4			
n n	††	1	19	2.5			
Noturus eleutherus	283	17	1-3	0.06			
Hypentelium nigricans	166	11	4-10	2.14			
Moxostoma anisurum	226	2	16-18	3.45			
Moxostoma erythrurum	230	7	4-16	5.54			
Moxostoma							
macrolepidotum	231	6	4-19	6.05			
Ictiobus bubalus	177	3	19-20	10.1			
Dorosoma cepedianum	48	6	11-16	6.5			
Lepisosteus osseus	198	1.	16	0.3	i		
Campostoma anomalum	25	10	3-5	0.3			
Hybopsis amblops	155	41	2-3	0.14			
Hybopsis insignis	1.60	31	3-4	0.31			
Nocomis micropogon	234	42	2-5	0.77			
Notropis chrysocephal	us 249	1.0	2-3	0.06			
Notropis leuciodus	255	2	3	0.01			
Notropis rubellus	260	128	1-3	0.19			
Notropis spilopterus	269	42	1-4	0.16			
Notropis volucellus	277	54	1-2	0.03			
Phenacobius	· · · · · · · · · · · · · · · · · · ·						
crassilabrum	328	2	3	0.03			
Phenacobius uranops	330	4	3-4	0.05			
* Label Parameter Listed			n next				
Field Notes: 700' sample							

Name of Collector(s): Rick Bivens, David Lane, Chester Ellison, Earl Seav.

Daniel Pollard, and Stan Lambert

FISH FIELD DATA FORM

TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Nolichucky R	Lat-Long 361048N - 830957W							
Body of Water Nolichuck		Date 15 October 1987						
County or River Mile Hamb		Reach 06010108-4,0						
	eene		Pool Elevation 1025'					
Gear Type Boat and back	pack		Time 110	00-1200 8	and 143	30-1530		
electrofishin	g							
SPECIES Name	CODE	NUMBER	LENGTH	WT.	*	*	*	
Pimephales notatus	334	1	2	t				
Pimephales vigilax	336	14	1-3	0.02				
Etheostoma acuticeps	73	65	1-2	* 0.22				
Etheostoma blennioide	s 81	30	2-4	0.54				
Etheostoma camurum	85	13	2	0.06				
Etheostoma jessiae	96	2	2	tt				
Etheostoma maculatum	101	1	2	t				
Etheostoma rufilineat	um 108	2	2	0.01				
Etheostoma simoterum	111	22	1-2	0.05				
Etheostoma zonale	135	97	1-3	0.42				
E. rufilineatum x								
camurum		1	2	t				
Percina caprodes	306	Ц	4-5	0.09				
Percina evides	310	3	2-3	0.01				
Cottus carolinae	40].	4	0.04				
Ichthyomyzon castanei	5.60	4	9-10	0.26				
10 nongong son cas vanet								
		-						
		<u> </u>			· · · · · · · · · · · · · · · · · · ·			
	<u> </u>					_		
		<u> </u>						
		ļ		ļ				
				<u> </u>	<u> </u>			
* Label Parameter Listed	* We	ight ba	ised on a	vg. wt.	of 7 p	reserved	l specimen	
medd Margar 7001 gamn'					\$			
Field Notes: 700' samp	re reme	U11 +						
Name of Collector(s): Ric	····							

Daniel Pollard, and Stan Lambert

Nolichucky River: Site # 1, Edge Surber sample

13 October 1987

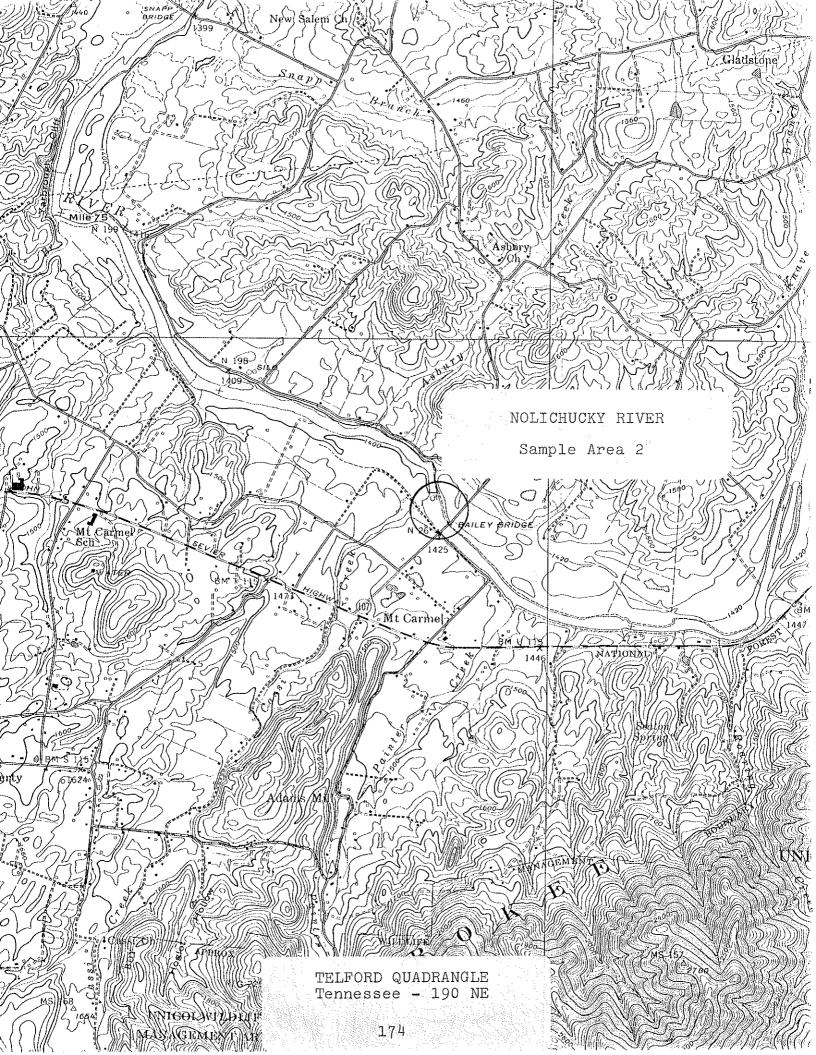
Field # 076

Hamblen, Greene, & Cocke Co., TN; Nolichucky River mi. 15.15. Coordinates: 361048N - 830957W. Springvale, Tenn., 172 NW Quad. Reach # 06010108-4,0.

AXA	NUMBER
COLEOPTERA: Elmidae/Stenelmis adults	4
DIPTERA: Chironomidae Simuliidae	49 3
EPHEMEROPTERA: Baetidae/ <u>Baetis</u> Heptageniidae/ <u>Stenonema</u> Oligoneuriidae/ <u>Tsonychia</u> Tricorythidae/ <u>Tricorythodes</u>	6 10 5 1
GASTROPODA: Pleuroceridae/Anculosa subglobosa	8
MEGALOPTERA: Corydalidae/Corydalus cornutus	3
PLECOPTERA: Perlidae/Phasganophora capitata	1
TRICHOPTERA: Hydropsychidae/Hydropsyche H. venularis	5 1
	96

Volumetric Displacement was 0.55 ml.

Nolichucky River: Site # 1, Midstream Surber sample


13 October 1987

Field # 076

Hamblen, Greene, & Cocke Co., TN; Nolichucky River mi. 15.15. Coordinates: 361048N - 830957W. Springvale, Tenn., 172 NW Quad. Reach # 06010108-4,0.

TAXA	NUMBER
COLEOPTERA: Elmidae/Stenelmis larva adults	1 2
EPHEMEROPTERA: Baetidae/Baetis Heptageniidae/Stenonema Oligoneuriidae/Isonychia	1 8 3
GASTROPODA: Pleuroceridae/Anculosa subglobosa	10
MEGALOPTERA: Corydalidae/Corydalus cornutus	3
ODONATA: Coenagrionidae	1
OLIGOCHAETA:	2
PLECOPTERA: Perlidae/Phasganophora capitata	1
	32

Volumetric Displacement was 2.75 ml.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

и.	1,002	RILON
	Wate	ershed Nolichucky River Lat-Long 360925N - 823530W
	Stre	Nolichucky River Length of Sample 600'
	Area	a or Station Site # 2 Reach 06010108-11,2
	Cour	hty Washington Date/Time 14 October 1987/1430
	Data	a Collected By Rick D. Bivens and Chester J. Ellison
в.	PHYS	SICAL CHARACTERISTICS
	1.	Average Width 284.5! Average Depth 2.55! Maximum Depth 7.4!
	2.	Estimated Percent of Stream in Pools is 30 %
	3.	Estimated Percent Pool Bottom is Mud 10 % Silt 30 % Sand 40 %
		Clay 5 % Gravel 5 % Rubble 5 % Boulders 5 %
		Bedrock _ % Other _ %
	4.	Estimated Percent Riffle Bottom is Mud _ % Silt 20 % Sand 30 %
		Bedrock - % Other Rubble 40% Gravel 5% Boulders 5%
	5.	Abundance of Littoral Aquatic Plants is Numerous
		Average X Scarce
	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in
		of stream, Average in 40 %, Poor in 30 %.
	7.	Shade or Canopy Good over 10 % of Stream.
	8.	Flow (c.f.s.) 522.3 : Flow compared to Normal: Low X Normal High_
	9.	D.O. 11.2 ppm Temp. 54.5°F % Saturation 103
	10.	Present Weather Clear and cool; air temp 67°F
	11.	Past Weather (last 24 hours) Clear and cool.
	12.	D.O. 11.2 pH 8.3 Temp. 54.5 Conductivity 105
	13.	Comments: Sample location at Bailey Bridge, Nolichucky River mile
		77.0.

FISH FIELD DATA FORM

TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Nolichucky River	Lat-Long 360925N - 823530W
Body of Water Nolichucky River .	Date 16 October 1987
County or River Mile Washington	Reach 06010108-11,2
Type of Sampling Electrofishing	Pool Elevation 1401'
Gear Type Boat and backpack on	Time 1100-1200
riffle areas.	

	riffle areas	•		· · · · · · · · · · · · · · · · · · ·	7		·	· · · · · · · · · · · · · · · · · · ·
Nam e	SPECIES	CODE	NUMBER	LENGTH	wr.	*	*	*
Micropte	rus dolomieui	218	3	4	0.11			
п	n	11	2	5	0.08			
11	11	11	3	6	0.31			
11	11	11	2	7	0.24			
11	n .	11	1	10	0.37			
Micropte	rus punctulat	us 219	1	3	0.02			
11	n	tt	3	4	0.07			
11	11	11	2	6	0.14			
Micropte	rus salmoides	220	2	5	0.09			
11	11	11	1	6	0.07			
11	11	11	1	9	0.33			
11	11	11	1	12	0.7			
Pomoxis	annularis	343	1.	10	0.49			
	nigromaculati	s 244	1	9	0.48	:		
11	"	11	1	11	0.67			
Amb Lop Li	tes rupestris	13	1	6	0.18			<u> </u>
Lepomis		201	49	1	0.05			
11	11	11	9	2	0.03			
11	11	11	2	3	0.06			
11	и	£1	6	4	0.31			
"	"	tt	12	5	0.97			
11	"	tt	5	6	0.77			
11	71	Ħ	2	7	0.39			
Lepomis	gulosus	204	1	6	0.19			
<u>+</u>	Continued	on	next	page				

*	Lahal	Parameter	Listed

Field	Notes:	600'	sample	length.	

Name of Collector(s): Rick Bivens, Chester Ellison, David Lane, Earl Seay,

Daniel Pollard, and Stan Lambert

FISH FIELD DATA FORM

TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Nolichucky River			Lat-Long 360925N - 823530W				
Body of Water Nolichucky River .			Date 16 October 1987				
County or River Mile Washington Type of Sampling Electrofishing			Reach 06010108-11,2 Pool Elevation 1401'				
SPECIES Name	CODE	NUMBER	LENGTH	wr.	*	*	*
Lepomis macrochirus	206	12	4	0.52			
n n	11	8	5	0.6			
Lepomis microlophus	209	1	6	0.1			
Pylodictus olivaris	346	1	14	1.15			
Carpiodes velifer	30	1	14	1.49			
Moxostoma anisurum	226	1	8	0.19			
Moxostoma duquesnei	229	11	6-8	1.65			
Moxostoma erythrurum	230	33	7-16	12.3			
Moxostoma					;		
macrolepidotum	231	8	8-17	6.1			
Hypentelium nigricans	1.66	22	5-14	3.52			
Dorosoma cepedianum	48	5	6-7	0.45			
Cyprinus carpio	47	1	28	11.6			
Campostoma anomalum	25	81	2-6	3.4			
Hybopsis insignis	160	3	3-4	0.04			
		ţ				1	1

* Label Parameter Listed * Specimen was donated to UT Ichthyology collection. Field Notes: 600' sample length.

2 - 7

1-3

1-2

1-2

2

1-2

3-4

1-2

page

1.2

0.01

0.03

0.07

t

0.18

0.05

0.02

Name of Collector(s): Rick Bivens, Chester Ellison, David Lane, Earl Seay,

Daniel Pollard, and Stan Lambert

234

253

260

269

272

277

328

334

on

26

6

18

1 656

19

next

301

Nocomis micropogon

Notropis galacturus

Notropis spilopterus

Notropis telescopus

Notropis volucellus

Pimephales notatus

crassilabrum

Continued

Phenacobius

Notropis rubellus

FISH FIELD DATA FORM

TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Nolichucky		Lat-Long 360925N - 823530W							
Body of Water Nolichuck	cy Rive:	r·.	Date 16	Octobe	r 1987				
County or River Mile Wash	nington		Reach 06010108-11,2						
Type of Sampling Electro	ofishin	3	Pool Elev	ation l	401'				
Gear Type Boat and back riffle areas	<u>n</u>	Time 1100-1200							
SPECIES Name	CODE	NUMBER	LENGTH	WT.	*	*	*		
Etheostoma acuticeps	73	28	1-3	0.09					
Etheostoma blennioide	s 81	30	2-5	0.48					
Etheostoma camurum	85	40	1-3	0.06					
Etheostoma zonale	135	9	2-3	0.06		,			
Percina caprodes	306	3	3-5	0.06					
Percina evides	310	11	2	0.03					
Cottus carolinae	40	5	2-4	0.04					
Lampetra appendix									
ammocoetes	192	2	5-7	0.03					
**************************************				-					
				<u> </u>					
	 		1						
* Label Parameter Listed	1	1	4	· · · · · · · · · · · · · · · · · · ·					
Field Notes: 600' samp	le lens	gth.							
tiera noces.									
				77.	urid Too	o Fow1	Coor		
Name of Collector(s): R1	ck Bive	ns, Che	ster El	lison, De	iviu har	re Barl	ыеау,		
Da	niel Po	llard.	and Star	n Lambar	o 1-				

Nolichucky River: Site # 2, Edge Surber sample

14 October 1987

Field # 077

Washington Co., TN; Bailey Bridge at Nolichucky River mi. 77.0. Coordinates: 360925N - 823530W. Telford, Tenn., # 190 NE Quad. Reach # 06010108-11,2.

TAXA	NUMBER
DIPTERA: Unidentified pupae	7
Chironomidae larvae adult	, 1
EPHEMEROPTERA: Oligoneuriidae/Isonychia	1
MEGALOPTERA: Corydalidae/Corydalus cornutus	1
OLIGOCHAETA:	2
TRICHOPTERA: Hydropsychidae/Cheumatopsyche Hydropsyche	1
	21

Volumetric Displacement was 0.5 ml.

Nolichucky River: Site # 2, Midstream Surber sample

14 October 1987

Field # 077

Washington Co., TN; Bailey Bridge at Nolichucky River mi. 77.0. Coordinates: 360925N - 823530W. Telford, Tenn., # 190 NE Quad. Reach # 06010108-11,2.

TAXA	NUMBER
COLEOPTERA: Elmidae/Promoresia tardella larvae	2
DIPTERA: Unidentified pupae Chironomidae larvae pupae Simuliidae larvae pupae Tipulidae/Antocha	5 32 2 4 5 2
EPHEMEROPTERA: Oligoneuriidae/ <u>Isonychia</u>	1
MEGALOPTERA: Corydalidae/Corydalus cornutus	2
OLIGOCHAETA:	2
PELECYPODA: Corbiculidae/Corbicula fluminea	34
TRICHOPTERA: Hydropsychidae/Hydropsyche venularis	6
	97

Volumetric Displacement was 2.0 ml.

Lick Creek

Two qualitative fishery surveys were conducted in July 1987:

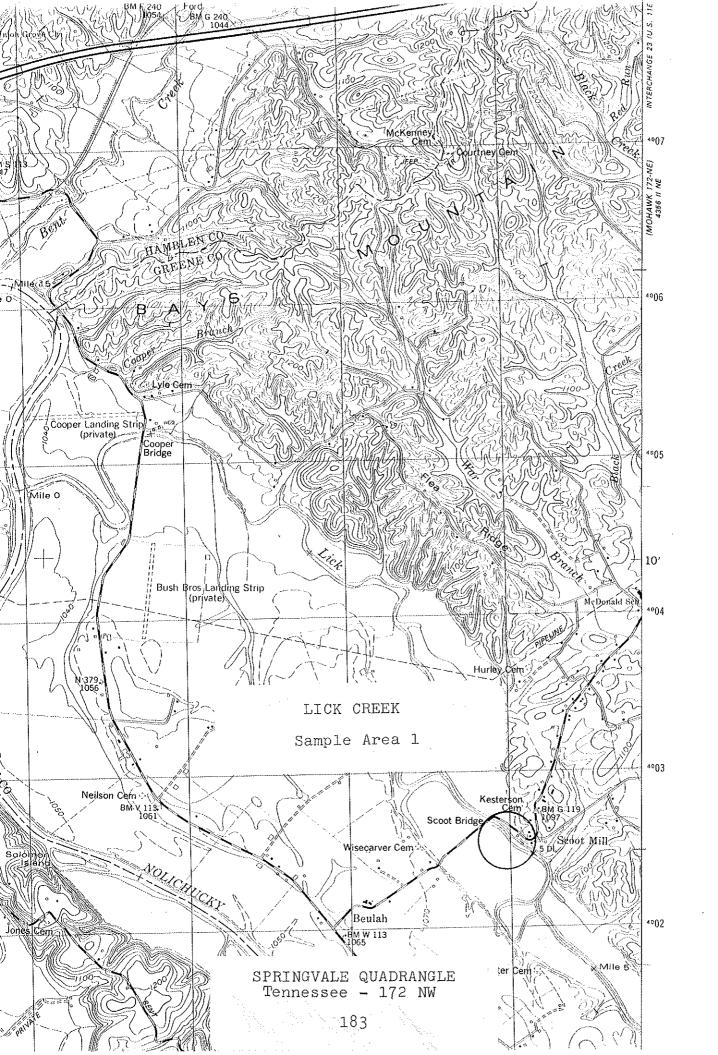
- Location and Length Tributary to the Nolichucky River. Sample area 1 was just upstream of Scoot Bridge on Highway 348, stream mi. 3.8. The sample area was 300 ft. in length and averaged 51.7 ft. in width. Sample area 2 was located at a county road bridge west of Highway 172, stream mi. 47.2. The sample area was 300 ft. in length and averaged 32.2 ft. in width. Both sites were in Greene County and were sampled on 1 July 1987. Site 1, Springvale Quadrangle. Site 2, Baileyton Quadrangle.
- Gear Type Both sites were sampled using backpack electrofishing equipment. Area 1 was sampled using only one shocker at 110 v. AC and shocking into a 30 ft. seine due to the turbidity. Area 2 was sampled with two shockers operating side by side at 110 v. AC.
- Water Quality Data were taken from midstream with a 4041

 Hydrolab on 1 July 1987. Area 1: DO 11.7 ppm, pH 7.5,

 Temperature 74.1 F, Conductivity 420 micromhos/cm.

 Area 2: DO 9.1 ppm, pH 7.8, Temperature 73.4 F,

 Conductivity 386 micromhos/cm.
- Benthos Collection Benthic organisms were collected from two square-foot Surber samples at each site. Area 1 averaged 6 organisms, 0.15 ml. volumetric displacement, and represented 6 different taxa. Area 2 averaged 14 organisms, 0.3 ml. volumetric displacement, and represented 12 different taxa.


Fish Collected:

ridir ooricooca,	Area 1			<u>Area 2</u>				
Species	No.	% by	Wt.	% by Wt.	No.	% by	Wt.	% by Wt.
Largemouth bass Spotted bass Rock bass	5	1.9	1.15	17.2	1 7 13	0.5 3.8 7.1	0.3 1.93 0.85	3.5 22.5 9.9
Bluegill Redbreast sunfish Warmouth	1 1 1	0.4 0.4 0.4	0.2 0.1 0.2	3.0 1.5 3.0	45	24.7	1.71	19.9
Nongame Fish Forage Fish	29 232	10.8 86.2	3.7 1.34	55.3 20.2	37 79	20.3 43.4	3.19 0.61	37.1 7.1
Total	269		6.69		182		8.59	

Comments:

This stream was surveyed primarily to develop a fish species diversity list and collect stream information for TADS. fish from both sample sites included largemouth bass (Micropterus salmoides), spotted bass (M. punctulatus), rock bass (Ambloplites rupestris), bluegill (Lepomis macrochirus), warmouth (L. gulosus), and redbreast sunfish (L. auritus). Largemouth bass and rock bass were collected only from the upper area while spotted bass were collected in about equal numbers from both sites. Redbreast sunfish made up about 25% of the total number of fish collected from the upper area. Also, channel catfish (Ictalurus punctatus) and one small flathead catfish (Pylodictis olivaris) were collected from the lower sample area. Sampling was difficult as the stream is very turbid and consequently many fish escaped capture. stream receives heavy siltation mainly from agricultural sources all along the watershed. We collected a total of 26 fish species from both sites combined, most of which are species typical of streams with non-point-source pollution.

The degree of siltation is also reflected in the low numbers of benthic macroinvertebrates collected from both sites. Samples from area 1 averaged only 6 organisms while area 2 averaged 1^4 organisms. These represented Baetidae, Caenidae, Heptageniidae, and Oligoneuriidae mayflies, and elmid riffle beetles. Asian clams (Corbicula fluminea) and the river snail (Pleurocera canaliculatum) were also present. No caddisflies were collected in any sample.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

А.	LUC	CALLON
	Wat	ershed Nolichucky River Lat-Long 360905N - 830807W
	Str	eam Lick Creek "Length of Sample 300'
	Are	ea or Station Site # 1 Reach 06010108-35
	Cou	nty Greene Date/Time 1 July 1987/1130
	Dat	a Collected By Rick D. Bivens, David Lane, and Chester J. Ellison
В.	PHY	SICAL CHARACTERISTICS
	1.	Average Width 51.7' Average Depth 1.3' Maximum Depth 3.0'
	2.	Estimated Percent of Stream in Pools is 40 %
	3.	Estimated Percent Pool Bottom is Mud 30 % Silt 40 % Sand 5 %
		Clay 20 % Gravel - % Rubble 5 % Boulders - %
		Bedrock - % Other - %
	4.	Estimated Percent Riffle Bottom is Mud 10 % Silt 20 % Sand 10
		Bedrock - % Other Rubble 50% Gravel 10%
	5.	Abundance of Littoral Aquatic Plants is Numerous
		Average X Scarce
	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in 40
		of stream, Average in 40 %, Poor in 20 %.
	7.	Shade or Canopy Good over 80 % of Stream.
	8.	Flow (c.f.s.) 48.4 : Flow compared to Normal: Low X Normal High
	9.	D.O. 7.3 ppm Temp. 74,1°F % Saturation 85
]	١٥.	Present Weather Clear, hot, and humid; air temp. 84°F
1	11.	Past Weather (last 24 hours) Clear, hot, and humid.
1	.2.	D.O. 11.7 pH 7.5 Temp. 74.1 Conductivity 420
1	.3.	Comments: Sample location just above Scoot Bridge on Hwy. 348.
		Slightly low and very turbid, which is normally the color. The
		stream over its course flows through land primarily used for
		agriculture.

FISH FIELD DATA FORM

TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Nolichucky F	liver		Lat-Long	360905	N - 8308	07W	
Body of Water Lick Cree		Date 1 July 1987					
	County or River Mile Greene				·35		
Type of Sampling Electro			Pool Eleva	ation 10	35 '		
Gear Type Backpack shock			Time 130	00-1500			
seine, 110 v.	AC						***************************************
SPECIES Name	CODE	NUMBER	LENGTH	WT.	*	*	*
Micropterus punctulati	s 219	1	11	0.5			
n n	11	2	8	0.5			
n n	††]	6	0.1			
n n	11	1	4	0.05			ļ
Lepomis auritus	201].	4	0.1			
Lepomis gulosus	204	1	6	0.2			
Lepomis macrochirus	206	1	6	0.2			<u> </u>
Ictalurus punctatus	176	1	19	1.7			
n n	!1	1.	7	0.1			
n n	ſŤ	1	4	t			
n n	11	1.	1	t			
Pylodictis olivaris	346	1	Ц	t			
Hypentelium nigricans	166	17	2-10	1.3			
Moxostoma erythrurum	230	7	4-9	0.6			· ·
Campostoma anomalum	25	8	1-2	t			
Hybopsis amblops	155	5	2	t			
Nocomis micropogon	234	6	2-10	0.67			
Notropis chrysocephal	us 249	2	Ц	t			
Notropis rubellus	260	33	2	0.09			
Notropis spilopterus	269	37	2-4	0.1			
Notropis volucellus	277	6	2	t			
Phenacobius uranops	333	6	3-4	0.05			
Etheostoma blennioide	81	37	1-3	0.2			
Etheostoma rufilineat	um 108	4	1-2	t			<u> </u>
Continued	on	next	page				

^{*} Label Parameter Listed

Field Notes: Stream very turbid, fish recovery was probably poor. Two hours sampling time with shocker and seine.

Name of Collector(s): Rick D. Bivens, David Lane, and Chester J. Ellison

WR-C525

FISH FIELD DATA FORM

TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Nolichucky		Lat-Long 360905N - 830807W							
Body of Water Lick Cre-	ek	,	Date 1 July 1987						
County or River Mile Gree	ene		Reach 06010108-35						
Type of Sampling Electro	ofishir	ıg	Pool Eleva	ation 103	5 '	· · · · · · · · · · · · · · · · · · ·			
Gear Type Backpack shock seine, 110 v.	Time 1300-1500								
SPECIES Name	CODE	NUMBER	LENGTH	WT.	*	*	*		
Etheostoma simoterum	111	99	2	t					
Etheostoma zonale	135	34	2	0.08					
Percina caprodes	306	5	3-5	0.05					
Cottus carolinae	40	40	1-2	0.1					

<u> </u>									
		···			~ ~~~~~~				
		+		:			<u> </u>		
		 			<u></u>				
					······································				
					<u> </u>	-			
		+	-			 			
		+							
	<u> </u>	!]	<u> </u>		<u> </u>	1		
* Label Parameter Listed									
Field Notes:	···								
Name of Collector(s): Ri	ck D. 1	Blvens,	David La	ne, and (Chester	r J. Ell	ison		

186.

Lick Creek: Site # 1, Edge Surber sample

1 July 1987

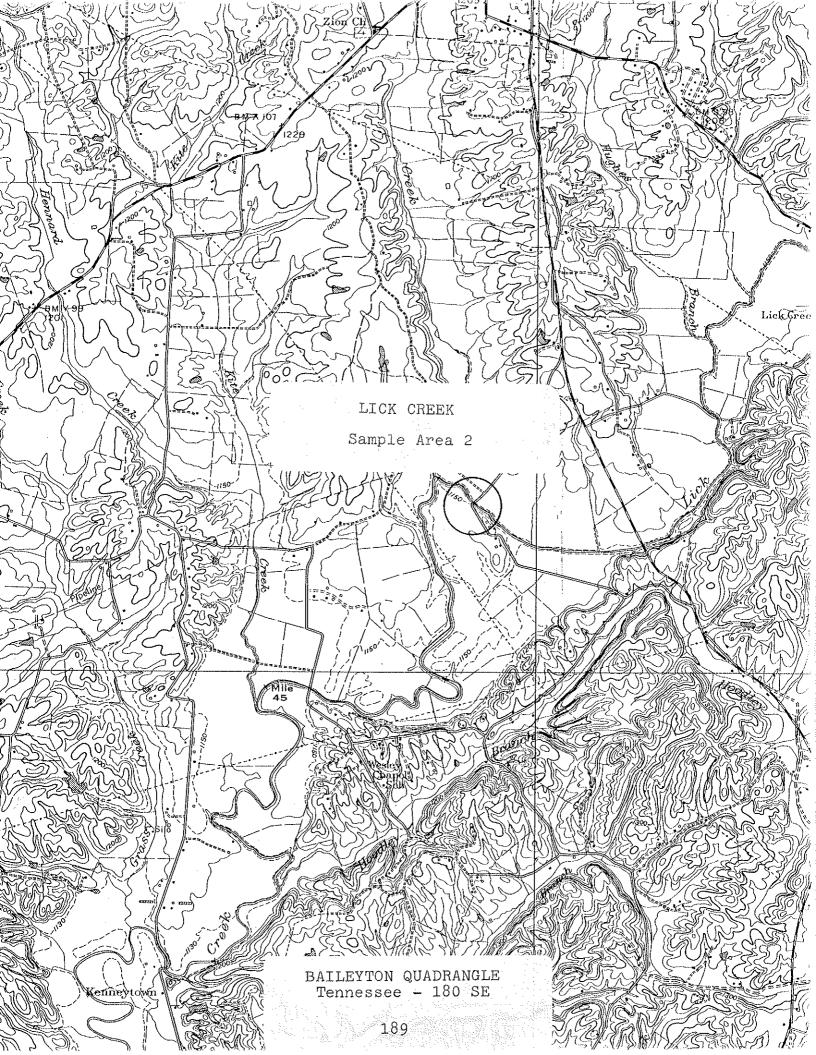
Field # 043

Greene Co., TN; Scoot Bridge on hwy. 348 at stream mi. 3.8. Coordinates: 360905N - 830807W. Springvale, Tenn., # 172 NW Quad. Reach # 06010108-35.

TAXA	NUMBER
EPHEMEROPTERA: Baetidae/Baetis Heptageniidae/Stenonema Oligoneuriidae/Isonychia	1 4 1
	<u></u>

Volumetric Displacement was 0.15 ml.

Lick Creek: Site # 1, Midstream Surber sample


1 July 1987

Field # 043

Greene Co., TN; Scoot Bridge on hwy. 348 at stream mi. 3.8. Coordinates: 360905N - 830807W. Springvale, Tenn., # 172 NW Quad. Reach # 06010108-35.

Elmidae/ <u>Stenelmis</u> larva PHEMEROPTERA: Heptageniidae/ <u>Stenonema</u> EGALOPTERA: Sialidae/ <u>Sialis</u>	NUMBER
COLEOPTERA: Elmidae/Stenelmis larva	1
EPHEMEROPTERA: Heptageniidae/Stenonema	2
MEGALOPTERA: Sialidae/Sialis	1
PELECYPODA: Corbicula fluminea	2
	6

Volumetric Displacement was 0.15 ml.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

Α.	TOC	ATION
	Wat	ershed Nolichucky River Lat-Long 361804N - 825016W
	Str	eam Lick Creek Length of Sample 300'
	Are	a or Station Site # 2 Reach 06010108-38
	Cou	nty Greene Date/Time 1 July 1987/1700
	Dat	a Collected By Rick D. Bivens, David Lane, and Chester J. Ellison
В.	PHY	SICAL CHARACTERISTICS
	1.	Average Width 32.2' Average Depth 0.6' Maximum Depth 1.8'
	2.	Estimated Percent of Stream in Pools is
	3.	Estimated Percent Pool Bottom is Mud 20 % Silt 20 % Sand 20 %
		Clay 10 % Gravel 10 % Rubble 20 % Boulders _ %
		Bedrock - % Other - %
	4.	Estimated Percent Riffle Bottom is Mud % Silt 10 % Sand 10 %
		Bedrock - % Other Rubble 50% Gravel 30%
	5.	Abundance of Littoral Aquatic Plants is Numerous
		Average X Scarce
	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in 40 %
		of stream, Average in 40 %, Poor in 20 %.
	7.	Shade or Canopy Good over 80 % of Stream.
	8.	Flow (c.f.s.) 20.1 : Flow compared to Normal: Low X Normal High
	9.	D.O. 9.1 ppm Temp. 73.4°F % Saturation 105
	10.	Present Weather Partly cloudy with occasional showers; air temp. 78°F
	11.	Past Weather (last 24 hours) Clear to partly cloudy, hot and humid.
	12.	D.O. 9.1 pH 7.8 Temp. 73.4 Conductivity 386
	13.	Comments: Sample location at county road bridge at stream mile 47.2.
		Stream is wide and fairly shallow, fairly turbid, with good habitat
		for fish. Low gradient, land use primarily agriculture.

FISH FIELD DATA FORM

TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Nolichucky R		Lat-Long 361804N'- 825016W									
Body of Water Lick Creek	Body of Water Lick Creek					Date 1 July 1987					
County or River Mile Gree			Reach 06010108-38								
Type of Sampling Electro	fishing		Pool Eleva	ition 114	0 1						
Gear Type 2 Backpack sho	ckers s		Time 1745	5-1845							
by side, 110 v	. AC	<u> </u>				1					
SPECIES Name	CODE	NUMBER	LENGTH	WT.	*	*	*				
Ambloplites rupestris	13	2	3	t							
" "	11	4	4	0.15							
11 11	11	3	5	0.2							
п	ff	4	6	0.5							
Micropterus punctulati	s 219	3	4	0.5							
" "	11	1.	7	0.15		<u> </u>					
11 11	!!	1	8	0.23	<u></u>						
11 11	Ť1	1	9	0.4							
11 11	11	1	11	0.65							
Micropterus salmoides	220	1	9	0.3							
Lepomis auritus	201	1.4	2	0.08							
n n	tī	9	3	0.12	<u> </u>						
н н	11	13	ŁΙ	0.51							
11 11	11	6	5	0.5							
11 11	tt	2	6	0.3							
п	Ħ	1.	7	0.2							
Catostomus commersoni	32	2	2-4	t			· ·				
Hypentelium nigricans	166	31	1-9	3.05							
Moxostoma erythurum	230	4	5	0.14							
Campostoma anomalum	25	8	1-3	t							
Hybopsis amblops	155	2	2-3	t							
Notropis chrysocephali	s 249	7	3-4	0.16							
Notropis galacturus	253	16	1-5	0:28		_					
Notropis rubellus	260	1	2	t							
Continued	on	next	page								

^{*} Label Parameter Listed

Field Notes: Water turbid, after side by side shocking, made 5 seine hauls with shocker; 300' sample length.

Name of Collector(s): Rick D. Bivens, David Lane, and Chester J. Ellison

WR-0525

FISH FIELD DATA FORM

TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Nolichucky R		Lat-Long 361804N - 825016W								
Body of Water Lick Cree	Body of Water Lick Creek .				Date July 1987					
County or River Mile Gre	eene		Reach 06010108-38							
Type of Sampling Electro	ofishin,	<u> </u>								
Gear Type 2 Backpack sho	side_	Time <u>17</u>	45-1845							
SPECIES Name	CODE	NUMBER	LENGTH	WT.	*	*	*			
Notropis spilopterus	269	11	1-4	0.07						
Notropis stramineus	271	5	1-3	t						
Etheostoma blennioide:	81	2	3-4	t ·	i					
Etheostoma jessiae	96	1	2.	t						
Etheostoma rufilineat	ım 108	2	2	t						
Etheostoma simoterum	111	15	1-2	t						
Percina caprodes	306	5	4-5	0.1						
Cottus carolinae	40	4	1-2	t						
		······································								
	-									
* Label Parameter Listed				·			, , ,			
Field Notes: 300' sampl	e lengt	h			····					
Name of Collector(s): Ric	k D. Bi	vens, 1	David Lar	ne, and	Chester	Л ЕДД	ison			
/R-C525										

Lick Creek: Site # 2, Edge Surber sample

1 July 1987

Field # 044

Greene Co., TN; County road bridge at stream mi. 47.2. Coordinates: 361804N - 825016W. Baileyton, Tenn., # 180 SE Quad. Reach # 06010108-38.

TAXA	NUMBER
COLEOPTERA: Elmidae/Macronychus glabratus adult Stenelmis larvae adults	1 5 2
DIPTERA: Tipulidae/Limnophila	1
EPHEMEROPTERA: Baetidae/Baetis Caenidae/Caenis Oligoneuriidae/Isonychia	1 1 1
PELECYPODA: Corbicula fluminea	3
	15

Volumetric Displacement was 0.35 ml.

Lick Creek: Site # 2, Midstream Surber sample

1 July 1987

Field # 044

Greene Co., TN; County road bridge at stream mi. 47.2. Coordinates: 361804N - 825016W. Baileyton, Tenn., # 180 SE Quad. Reach # 06010108-38.

TAXA	NUMBER
COLEOPTERA: Elmidae/Stenelmis larva	1
DIPTERA: Chironomidae	1
EPHEMEROPTERA: Heptageniidae/Stenacron Stenonema	1 5
GASTROPODA: Pleuroceridae/Pleurocera canaliculatum	2
OLIGOCHAETA:	1
PELECYPODA: Corbiculade/Corbicula fluminea	. 2
	13

Volumetric Displacement was 0.25 ml.

Pigeon River

Three quantitative fishery surveys were conducted in March 1987:

- Location and Length Sample area 1 was at Brown Island, Pigeon River mi. 17.0. The sample area was 180 ft. in length and averaged 106 ft. in width, and on the lefthand side of the island. Sample area 2 was at the Hartford Bridge. It was 170 ft. in length and averaged 53.5 ft. in width, and on the righthand side of an island. Sample area 3 was downstream of Walters Power House, at Pigeon River mi. 25.1. The sample area was 170 ft. in length and averaged 93 ft. in width. All three sites were in Cocke County and were sampled on 31 March 1987. Sites 1 and 2, Hartford Quadrangle. Site 3, Waterville Quadrangle.
- Gear Type All three sites were sampled using explosives.

 Primacord with a block-off net anchored downstream to collect fish was used at each sample area.
- Water Quality Data were taken from midstream with a 4041

 Hydrolab on 30 April 1987. Area 1: DO 9.4 ppm, pH 7.9,

 Temperature 63.1 F, Conductivity 169 micromhos/cm.

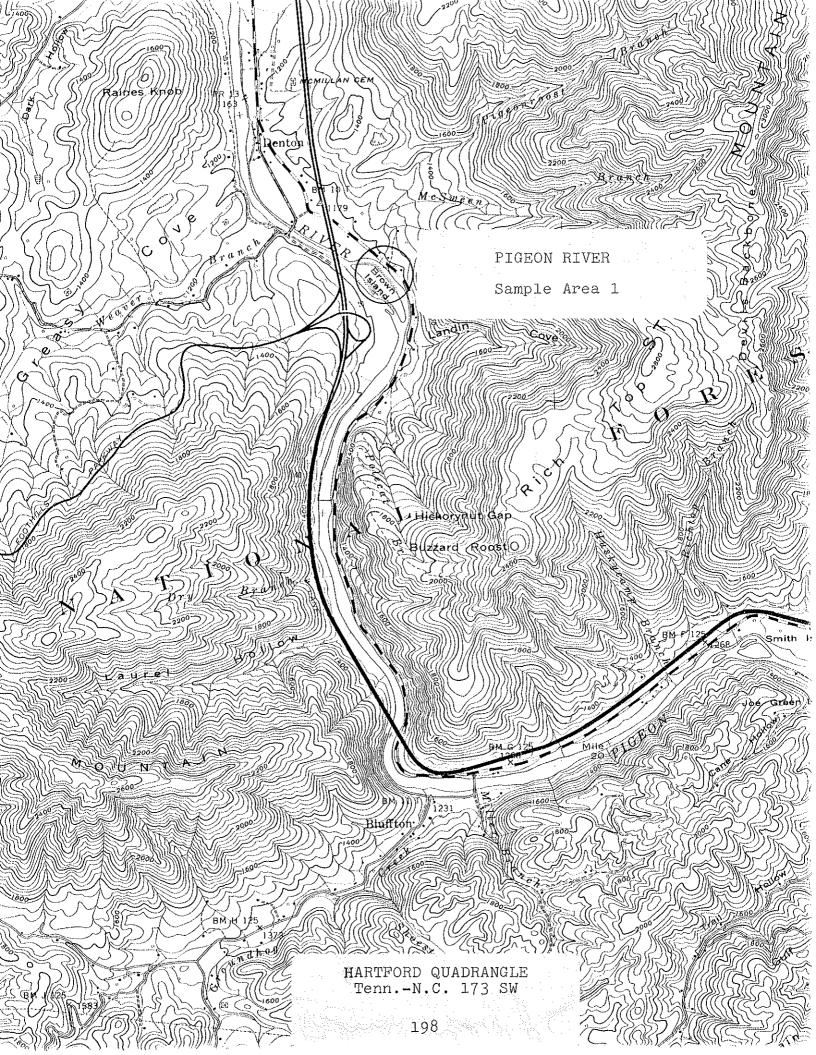
 Area 2: DO 9.3 ppm, pH 7.8, Temperature 62.8 F,

 Conductivity 156 micromhos/cm. Area 3: DO 9.6 ppm,

 pH 7.9, Temperature 59.4 F, Conductivity 37 micromhos/cm.
- Benthos Collection Benthic organisms were collected from two square-foot Surber samples at each site. Area 1 averaged 78 organisms and represented 21 different taxa. Area 2 averaged 48 organisms and represented 21 different taxa. Area 3 averaged 19 organisms and represented 13 different taxa.

Fish Collected: (See accompanying table)

Comments - The lower 26 miles of the Pigeon River in Tennessee have been polluted by Champion International Coropration since about 1908. Effluent discharge from the pulp and paper manufacturing facility in Canton, North Carolina causes severe degradation of water quality that impacts the fish and benthic communities downstream (Schacher 1987). The river has lost almost all of its native fishes due to this pollution and very little is known of the former fish fauna of the Pigeon (Etnier 1973). Stubbs (1965) found that rough fish comprised 91% by numbers and 99.6% by weight of all fish collected in four electrofishing samples. He concluded that not only were there few game fish present in the Pigeon River, but there were very few fish present


at all. Additional sampling near Hartford in 1976, using fish toxicants, revealed only rough fish present (TWRA unpublished data).

In an effort to update and expand our fishery information, we cooperated in a multi-agency sampling at three sites on the Pigeon River using explosives (primacord). A combined total of 52 fish of five species were collected. Game fish included 1 rock bass (Ambloplites rupestris) and 9 redbreast sunfish (Lepomis auritus). Thirty-seven whitetail shiners (Notropis galacturus), 4 central stonerollers (Campostoma anomalum), and 1 northern hog sucker (Hypentelium nigricans) comprised the rest of the sample. Our sampling again indicates both low numbers of game fish and low species diversity. Fish collected by TWRA in February, 1988, and tested by the Environmental Protection Agency, also revealed the presence of dioxin contamination. Dioxin, which has been associated with waste water from paper mills, further adds to the pollution problems of the Pigeon and may also have severe implications for Douglas Reservoir downstream. If the Pigeon River were allowed to recover, by elimination or at least a significant reduction of pollution, it has the capacity to become a very productive and highly utilized stream.

Benthic macroinvertebrates from our samples were generally low in numbers except for the more pollution tolerant forms such as chironomids, simuliids, and oligochaets. Others included representatives of Baetidae, Ephemerellidae, and Heptageniidae mayflies, Hydropsychidae, Hydroptilidae, Philopotamidae, Polycentropodidae, and Psychomyiidae caddisflies, and Perlidae and Perlodidae stoneflies. These may be wash-in organisms from high quality tributaries and caution should be observed in implying water quality based on our limited benthic sampling. The only mollusks in our collection were Asian clams (Corbicula fluminea) and one specimen of Ancylidae gastropod (Ferrissia sp.).

Fish collected in three quantitative samples of the Pigeon River.

Actual		Ar	Area 1			AT	Area 2			Ar	Area 3	
Species	No.	% by	Wt.	% by Wt.	No.	% by No.	W t	% by Wt.	No.	% by No.	Wt.	% by Wt.
Rock bass Redbreast sunfish	<u> </u>	21.9	0.3	42.9	N	10.	0.05	2.2	 1	100	0	100
Nongame Fish Forage Fish	Ω 7.	78.1	4.0	57.1	H 9 H	84.2	00.0	80 80 80 80 80 80				
Total	32		1.0		19		2.25		r-f		0.1	
Calculated Standing Crop/ac												
Species												
Rock bass Redbreast sunfish	79		0.7		10		0.24		m		0.3	
Nongame Fish Forage Fish	τυ 80		0.0		72		9.6					
Total	74		7.6		92		10.8		M		0.3	

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

A. LOCATIO

	Wa	tershead French Broad River Lat-Long 355028N - 831039W
	St	ream Pigeon River Length of Sample 180'
	Are	ea or Station Site # 1 Reach 06010106-9,0
	Cot	unty Cocke Date/Time 30 April 1987/1715
	Dat	ta Collected By Rick D. Bivens and Chester J. Ellison
В.	PHY	SICAL CHARACTERISTICS
ŧ	1.	Average Width 106' Average Depth 1.4' Maximum Depth 5' est.
•	2.	Estimated Percent of Stream in Pools is 30 %.
	3.	Estimated Percent Pool Bottom is Mud 10 % Silt 20 % Sand 10 %
		Clay - % Gravel 10 % Rubble 25 % Boulders 25 %
		Bedrock - % Other - %
	4.	Estimated Percent Riffle Bottom is Mud 5 % Silt 10 % Sand 10 %
		Bedrock - % Other Rubble 50% Boulders 25%
	5.	Abundance of Littoral Aquatic Plants is Numerous
		Average Scarce X
	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in 40 %
ii.		of Stream, Average in 30 %, Poor in 30 %
	7.	Shade or Canopy Good over 30 % of Stream; Interferes little
		(degree) with any (type) of fishing.
	8.	Flow (c.f.s.) 89.0 : Flow compared to Normal: Low Normal X High
	9.	D.O. 9.4 ppm Temp. 63.1°F % Saturation 96
	10.	Present Weather Partly cloudy and warm, air temp. 82°F
:	11.	Past Weather (last 24 hours) Partly cloudy and mild.
	12.	D.O. <u>9.4</u> pH <u>7.9</u> Temp. <u>63.1</u> Conductivity <u>169</u>
	13:	Comments: Sample location lefthand side (upstream) of Brown
		Island, Pigeon River mi. 17.0. Water very colored here.
		* No generation at Walters Power Plant and around an island.

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Site #1 - Brown Island, Pigeon River mi. 17.0

Watershed French Bro	er	Lat-Long_	35502	Lat-Long 355028N - 831039W					
Body of Water Pigeon		Date <u>31</u>	March 1	987					
County or River Mile Co		Reach 0	6010106	-9,0					
Type of Sampling Explo		Pool Eleva	ition 11	70'					
Gear Type Primacord									
180' sample	e lengtl	h							
SPECIES Name	CODE	NUMBER	LENGTH	WI.	*	*	*		
Lepomis auritus	201	1	1	t					
11 11	11	14	2	t					
it it	11	1	3	t					
11 11	11	1	7	0.3					
Campostoma anomalum	25	2	4-5	0.05					
Notropis galacturus	253	23	3-5	0.35					
							ļ		
	ĺ								
WAR AND THE RESERVE OF THE PARTY OF THE PART									
							•		
		İ				İ			
									
					. 1	j			
			İ				i		
		1]				i .		
		1	i				4		
		1			1				
			<u> </u>						
						· 			
			1	<u> </u>		1			
		<u> </u>	1	<u> </u>					
						1			
		<u> </u>	<u> </u>						
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	l	!	1	<u> </u>	ł	1			
Label Parameter Listed									
ield Noces:									
	·	· · · · · · · · · · · · · · · · · · ·	·····						
lame of Collector(s): T.	Cheek,	W. Scha	cher, D.	Wilson,	R. Biv	vens, C	Ellison,		

WR-0525

G. Hickman, A. Brown, C. O'Bara, J. Wojtowicz, et al.

Pigeon River: Site # 1, Edge Surber sample

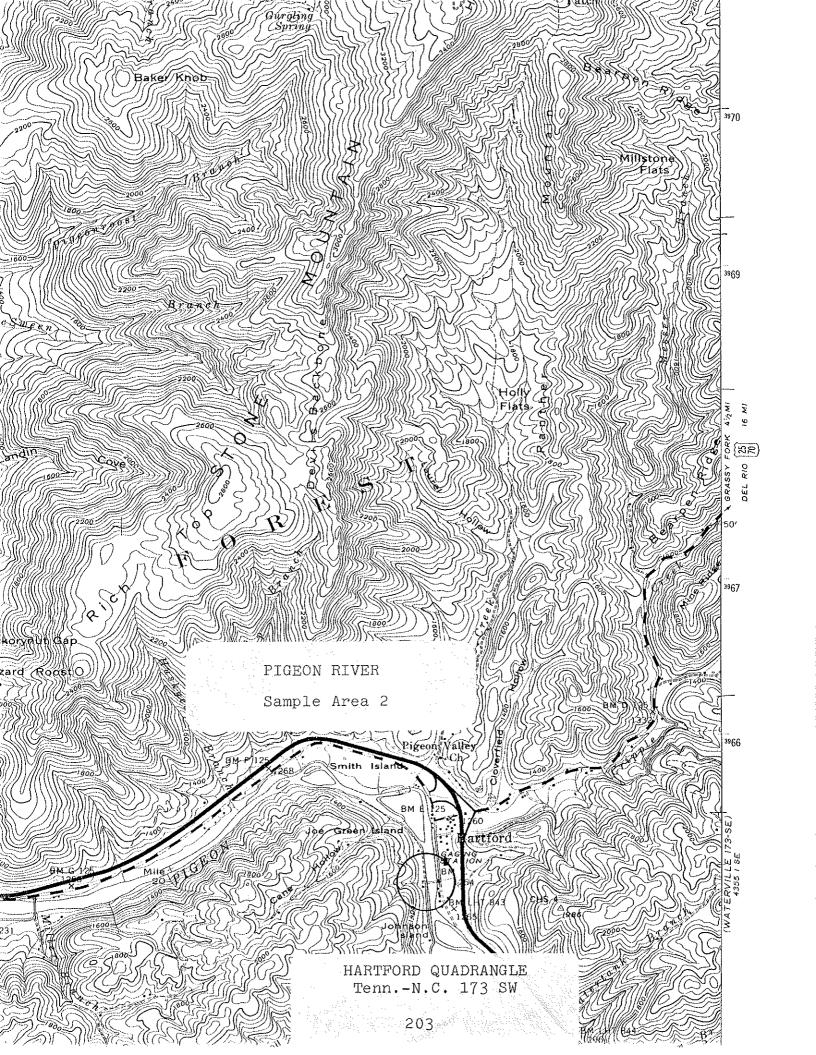
30 April 1987

Field # 029

45

Cocke Co., TN; Lefthand side of Brown Island, Pigeon River mi. 17.0. Coordinates: 355028N - 831039W. Hartford, Tenn.-N.C., # 173 SW Quad. Reach # 06010106-9,0.

TAXA	NUMBER
COLEOPTERA: Psephenidae/Psephenus herricki	1
DIPTERA: Unidentified pupae Chironomidae Empididae Simuliidae Tipulidae/Antocha	3 16 2 3 1
EPHEMEROPTERA: Baetidae/ <u>Pseudocloeon</u> Ephemerel <u>lidae/Ephemerella</u>	1 3
LEPIDOPTERA: Pyralidae/Petrophila	1
MEGALOPTERA: Corydalidae/Corydalus cornutus Nigronia serricornis	1
OLIGOCHAETA:	2
PELECYPODA: Corbiculidae/Corbicula fluminea	6
TRICHOPTERA: Hydropsychidae/Cheumatopsyche Hydroptilidae/Hydroptila Psychomyiidae/Psychomyia flavida	2 1 1


Pigeon River: Site # 1, Midstream Surber sample

30 April 1987

Field # 029

Cocke Co., TN; Lefthand side of Brown Island, Pigeon River mi. 17.0. Coordinates: 355028N - 831039W. Hartford, Tenn.-N.C., # 173 SW Quad. Reach # 06010106-9,0.

TAXA	NUMBER
DIPTERA: Unidentified pupae Chironomidae Empididae larvae pupae Tipulidae/Antocha larvae pupae	6 42 2 2 20 5
EPHEMEROPTERA: Ephemerellidae/Ephemerella Heptageniidae/Stenacron	5 2
ISOPODA: Asellidae/Asellus	1
ODONATA: Coenagrionidae/Argia	2
OLIGOCHAETA:	5
PELECYPODA: Corbiculidae/Corbicula fluminea	2
PLECOPTERA: Perlidae (early instar)	1
TRICHOPTERA: Hydropsychidae/Cheumatopsyche Symphitopsyche morosa Hydroptilidae/Unidentified pupae Hydroptila	1 1 5 9
	111

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

A.	LOC	CATION	
	Wat	tershead French Broad River	Lat-Long 354846N - 830843W
	Str	ream Pigeon River	Length of Sample 170'
	Are	ea or StationSite #2	Reach 06010106-9,0
	Cou	inty Cocke	Date/Time 30 April 1987/1500
	Dat	a Collected By Rick D. Bivens a	nd Chester J. Ellison
В.	PHY	SICAL CHARACTERISTICS	
	1.	Average Width 53.5' Average	Depth 0.9' Maximum Depth 4'
	2.	Estimated Percent of Stream in Pool	s is
	3.	Estimated Percent Pool Bottom is Mu	d % Silt l0 % Sand 20 %
		Clay - % Gravel 10 % Rub	ble 30 % Boulders 30 %
		Bedrock - % Other - %	
	4.	Estimated Percent Riffle Bottom is	Mud % Silt_10% Sand_20_%
		Bedrock - % Other Rubble	40% Boulders 30%
	5.	Abundance of Littoral Aquatic Plant	s is Numerous
		Average	ScarceX
	6.	Cover Abundance (overhanging banks,	logs, roots, etc.) is Good in 30 %
		of Stream, Average in30	%, Poor in%
	7.	Shade or Canopy Good over 30	% of Stream; Interferes little
		(degree) with any (type) of fishing.
	8.	Flow (c.f.s.) 57.8 : Flow compar	ed to Normal: Low Normal X High
	9.	D.O. 9.3 ppm Tem	p. 62.8°F % Saturation 95
	10.	Present Weather Partly cloudy an	nd warm, air temp. 84°F
	11.	Past Weather (last 24 hours) Part	ly cloudy and mild.
	12.	D.O. 9.3 pH 7.8 Temp. 62.8 Cond	uctivity 156
	13:	Comments: Sample location at Ha	artford Bridge, righthand (upstream
		side of island just below the	bridge. Water very colored here.
		* No generation at Walters Po	ower Plant and around an island.

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Body of Water Pigeon River County or River Mile Cocke			Date 31	March 1	987			
Type of Sampling Expl								
Gear Type Primacord			Time 1630-1715					
170' sample								
SPECIES Name	CODE	NUMBER	LENGTE	WI.	*		*	
epomis auritus	201	1	2	t				
tt tt	11	1	5	0,05				
ypentelium nigricans	166	1	17	2.0	1			
Campostoma anomalum	25	2	4	0.05				
otropis galacturus	253	1.4	2-5	0.15				
					:			
			İ					
				[į	
					<u> </u>	<u> </u>	,	
######################################		<u> </u>	<u> </u>					
				!				
				: :	<u> </u>		· · · · · · · · · · · · · · · · · · ·	
		1						
			1		 		<u>'</u>	
			!	:				
	<u> </u>	1	f		<u> </u>	1		
Label Parameter Listed					!			
ield Notes:								

Name of Collector(s): T. Cheek, W. Schacher, D. Wilson, R. Bivens, C. Ellison

WR-C525

G. Hickman, A. Brown, C. O'Bara, et al.

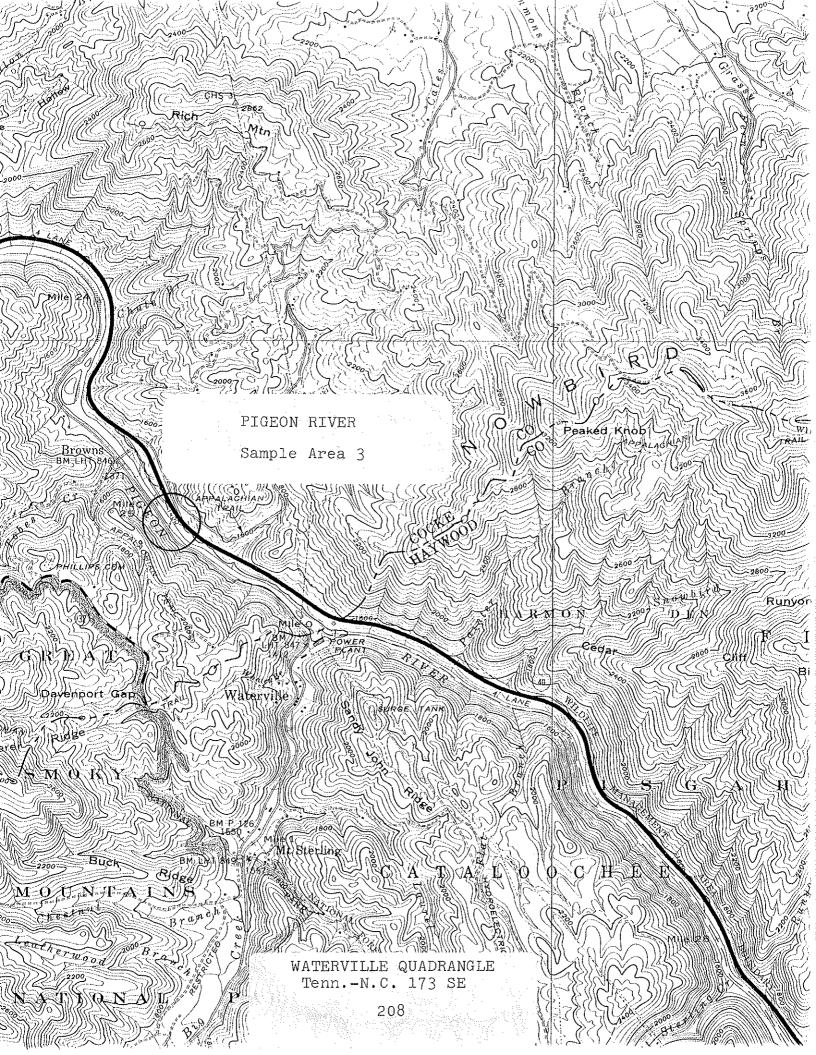
Pigeon River: Site # 2, Edge Surber sample

30 April 1987

Field # 030

Cocke Co., TN; Just below the Hartford bridge on right side. Coordinates: 354846N - 830843W. Hartford, Tenn.-N.C., # 173 SW Quad. Reach # 06010106-9,0.

TAXA	NUMBER
DIPTERA: Unidentified pupae Chironomidae Simuliidae	2 4 5
EPHEMEROPTERA: Baetidae/Pseudocloeon Ephemerellidae/Ephemerella Drunella Heptageniidae/Epeorus (Iron) Stenonema	3 2 1 1
ISOPODA: Asellidae/Asellus	5
MEGALOPTERA: Corydalidae/Corydalus cornutus	2
ODONATA: Coenagrionidae/Argia	1
OLIGOCHAETA:	13
PLECOPTERA: Perlidae (early instar) Perlodidae/ <u>Isoperla</u>	1 1
TRICHOPTERA: Hydropsychidae/Unidentified pupae Cheumatopsyche Symphitopsyche sparna Lepidostomatidae/Lepidostoma adult Polycentropodidae/Polycentropus (early instars)	2 2 3 1 2


Pigeon River: Site # 2, Midstream Surber sample

30 April 1987

Field # 030

Cocke Co., TN; Just below the Hartford bridge on right side. Coordinates: 354846N - 830843W. Hartford, Tenn.-N.C., # 173 SW Quad. Reach # 06010106-9,0.

NUMBER
2
15 2 1
1
11
1
2
3
-Jr.
1
1
2
1
1
44

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

n.	L	JOATION						
	Wa	ntershead French Broad River	Lat-Long 354652N - 830635W					
*	St	ream Pigeon River	Length of Sample 170'					
		ea or Station Site # 3						
		unty Cocke	•					
		ta Collected By Rick D. Bivens a						
В.	PH	YSICAL CHARACTERISTICS						
*	1. Average Width 93' Average Depth 1.3' Maximum Depth 7'							
•	2. Estimated Percent of Stream in Pools is 30 %.							
3. Estimated Percent Pool Bottom is Mud % Silt 10 % Sand								
	Clay - % Gravel 15 % Rubble 15 % Boulders 15 %							
		Bedrock 20 % Other - %	Ŧ.					
4. Estimated Percent Riffle Bottom is Mud - % Silt 10 % Sand 2								
		Bedrock 15 % Other Rubble 3	Boulders 15%					
5. Abundance of Littoral Aquatic Plants is Numerous								
		Average	Scarce X					
	6.		logs, roots, etc.) is Good in 50 %					
		of Stream, Average in25	_%, Poor in25%					
	7.	Shade or Canopy Good over 50	% of Stream; Interferes little					
		(degree) with any (t						
	8.	Flow (c.f.s.) 193.4 : Flow compare	d to Normal: Low Normal X High					
	9.	D.O. 9.6 ppm Temp	. 59.4°F % Saturation 95					
1	0.	Present Weather Partly cloudy and warm, air temp. 84°F						
1	1.	Past Weather (last 24 hours) Partly cloudy and mild.						
1	2.	D.O. 9.6 pH 7.9 Temp. 59.4 Conductivity 37						
1	3: Comments: Sample location at Pigeon River mi. 25.1.							
			wer Plant.					
			•					

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

·····			Lat-Long 334032N - 030033W					
Body of Water Pigeon F		Date 31 March 1987						
County or River Mile C		Reach 06010106-9,0 Pool Elevation 1470'						
Type of Sampling Explo								
Gear Type Primacord		Time 110	0-1200					
170' sample	elength	1						
SPECIE S Name	CODE	NUMBER	LENGTH	WI.	*	*	*	
Ambloplites rupestris	13	1	6	0.1				
					1			
		ì	·					
				-				
				1				
			!				•	
							!	
							,	
							-	
	·	<u> </u>						
			i	 			,	
			• • • • • • • • • • • • • • • • • • •					
	1	i			1	1		

* Label Parameter Listed

Field Notes: Fish recovery may have been poor due to trouble with the block net and an inflow of muddy water during sampling.

Name of Collector(s): T. Cheek, W. Schacher, D. Wilson, R. Bivens, C. Ellison, R. Kirk, G. Hickman, A. Brown, C. O'Bara, J. Wojtowicz, et al. wR-C525

Pigeon River: Site # 3, Edge Surber sample

30 April 1987

Field # 028

Cocke Co., TN; Downstream from Walters Powerhouse at Pigeon River mi. 25.1. Coordinates: 354652N - 830635W. Waterville, Tenn.-N.C., # 173 SE Quad. Reach # 06010106-9,0.

TAXA	NUMBER
DIPTERA: Unidentified pupa Chironomidae Empididae	1 7 1
EPHEMEROPTERA: Baetidae/ <u>Pseudocloeon</u> Heptageni <u>idae/Stenonema</u>	2 1
GASTROPODA: Ancylidae/ <u>Ferrissia</u>	1
MEGALOPTERA: Corydalidae/Corydalus cornutus	1
OLIGOCHAETA:	1
TRICHOPTERA: Hydropsychidae/Cheumatopsyche C. pettiti adults Symphitopsyche sparna pupae S. sparna larvae Philopotamidae/Dolophilodes distinctus Polycentropodidae/Polycentropus	3 2 2 6 3 1
	32

Pigeon River: Site # 3, Midstream Surber sample

30 April 1987

Field # 028

Cocke Co., TN; Downstream from Walters Powerhouse at Pigeon River mi. 25.1. Coordinates: 354652N - 830635W. Waterville, Tenn.-N.C., # 173 SE Quad. Reach # 06010106-9,0.

TAXA	NUMBER
DIPTERA: Chironomidae	2
EPHEMEROPTERA: Heptageniidae/ <u>Heptagenia</u>	1
OLIGOCHAETA:	1
TRICHOPTERA: Hydropsychidae/Cheumatopsyche pupa	1.
	5

Holston River

Three qualitative fishery surveys were conducted in July and August 1987:

- Location and Length Sample area 1 was at Nance Ferry, Holston River mi. 33.3, and was sampled on 21 and 22 July 1987. The area was 500 ft. in length and averaged 421.6 ft in width. Sample area 2 was upstream from the Surgoinsville Bridge at Holston River mi. 119.1, and was sampled on 24 July 1987. The sample area was 500 ft. in length and averaged 465 ft. in width. Sample area 3 was near Church Hill, at Holston River mi. 135.9, and was sampled on 5 August 1987. The sample area was 500 ft. in length and averaged 417.5 ft. in width. Sample area 1 was in Grainger and Jefferson Counties. Both sites 2 and 3 were in Hawkins County. Area 1, Lutrell Quadrangle. Area 2, Stony Point Quadrangle. Area 3, Church Hill Quadrangle.
- Gear Type Sample area 1 and 3 were sampled using both boat and backpack electrofishing equipment. A shocker boat was used where deeper water permitted and shallow riffle areas were sampled with either a backpack shocker alone, or a backpack shocker in combination with a 30 ft. seine. Area 2 was sampled using a shocker boat only.
- Water Quality Data were taken from midstream with a 4041
 Hydrolab, Model 58 YSI meter, and Hach Pocket pH meter.
 Area 1, on 21 and 22 July 1987: DO 6.1 ppm, pH 7.3,
 Temperature 61.5 F, Conductivity 253 micromhos/cm.
 Area 2, on 23 July 1987: DO 8.0 ppm, pH 8.8,
 Temperature 77.2 F. Area 3, on 4 August 1987: DO 6.1 ppm,
 pH 7.6, Temperature 68.7 F.
- Benthos Collection Benthic organisms were collected from two square-foot Surber samples at each site. Area 1 averaged 148 organisms, 1.0 ml. volumetric displacement, and represented 10 different taxa. Area 2 averaged 35 organisms, 0.4 ml. volumetric displacement, and represented 10 different taxa. Area 3 averaged 99 organisms, 0.8 ml. volumetric displacement, and represented 20 different taxa.

Fish Collected: (See accompanying table)

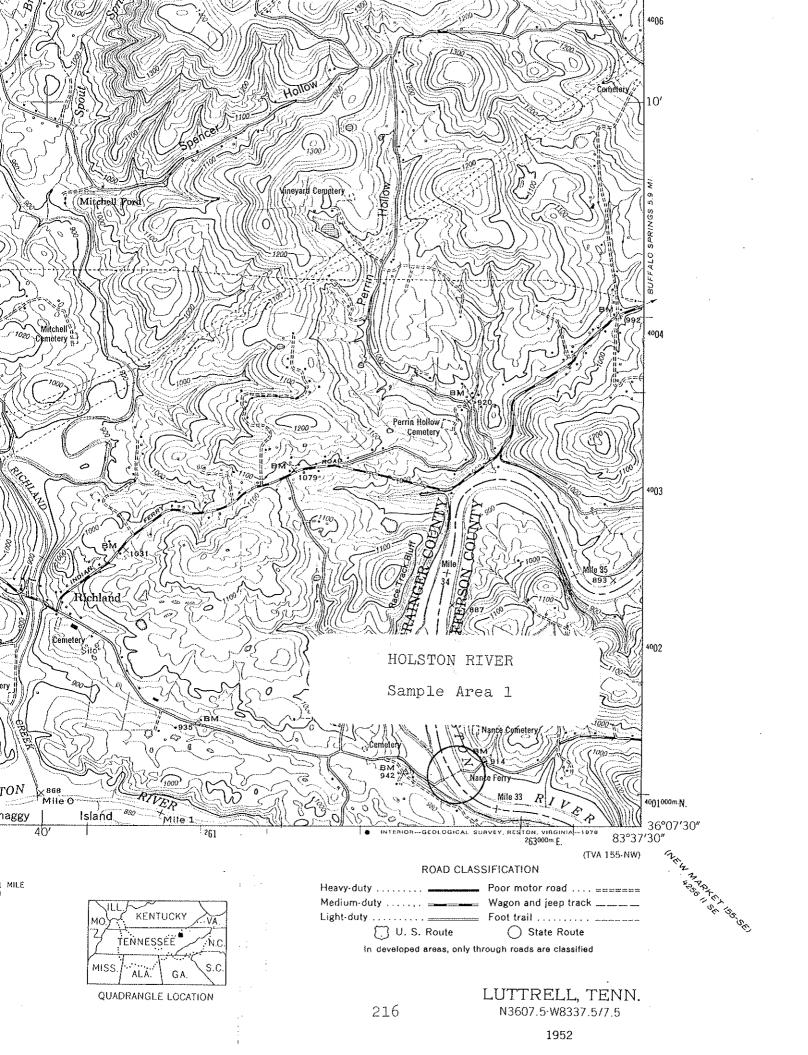
Comments - Three areas of the Holston River were sampled primarily to develop a fish species diversity list, collect stream information for TADS, and update fishery data for the agency.

One area downstream of Cherokee Reservoir and two areas

upstream of John Sevier Detention Reservoir were sampled.

Game fish from the sample area downstream of Cherokee
Reservoir included largemouth bass (Micropterus salmoides),

bluegill (Lepomis macrochirus), redbreast sunfish (L. auritus), white bass (Morone chrysops), and yellow bass (M. mississippiensis). It is interesting to note the occurrence of the yellow bass. This fish has recently become common in mainstream reservoirs in east Tennessee and is on an apparent upstream migration (Etnier and Starnes 1980). It was absent from Holston River collections made by TVA in the mid-1970s and has probably moved into the river only within the last decade. Yellow bass made up about 15% of the total number and about 11% of the total weight of all fish in our recent collection. A total of 19 fish species was collected from the lower site.


Game fish from our sample areas upstream of John Sevier were primarily smallmouth bass (M. dolomieui), rock bass (Ambloplites rupestris), and redbreast sunfish. Bluegill and redear sunfish (L. microlophus) were also present.

This segment of the river has been polluted by municipalities and industries located upstream and major fish kills resulting from toxic discharges have occurred and continue to occur. However, conditions have improved from the severity of the 1970s and early 1980s and fish populations have made substantial recovery. A TVA report (Saylor and Brown 1987) summarized that this river segment supports an excellent panfish fishery but less-than-quality smallmouth bass fishery that could support and would probably benefit from increased harvest. We collected a combined total of 33 fish species from our two sample sites. TVA collected a combined total of 42 species from eight sample areas.

Benthic macroinvertebrates from our samples downstream of Cherokee Reservoir included Hydropsychidae and Hydroptilidae caddisflies, chironomid and simuliid larvae and pupae, and isopods (Lirceus). Asian clams (Corbicula fluminea) and the river snail (Pleurocera canaliculatum) were also present. Upstream of John Sevier the samples included primarily Baetidae, Caenidae, Heptageniidae, and Tricorythidae mayflies, Hydropsychidae caddisflies, and chironomids, simuliids, and cranefly larvae (Antocha). Asian clams and river snails (Anculosa subglobosa, P. canaliculatum, and P. unciale) were also present.

Fish collected in three qualitative samples of the Holston River.

		Ar	Area 1			AI	Area 2			Ar	Area 3	
Species	No	% by No.	Wt.	% by Wt.	No.	% by No.	Wt.	% by Wt.	No.	% by No.	Wt.	% by Wt.
Largemouth bass	m	0.8	0.45	0.8	ر د	L(и С			r C		1
្រំ ស រ រ	77 0	14.7	5.76	10 10 10	7	•		1.	0	•	0.7	۲.)
2 C C C C C C C C C C C C C C C C C C C	`		•		32		•	•	rv W	10.8	12.4	22.2
 	13	3.4	2.37	4.3	Н			٠				
Redbreast sunfish Redear sunfish	<u>~</u>	•	•	•	37	NO QW	0.0 .00	00.7	24	4.9	3.85	6.9
Nongame Fish Forage Fish	23 23 23 23	10.5	41.98	76.8	77	12.3	94.15	73.0	333 348	6.7	33.45	50 00 00
Total	382		54.68		625	H	.28.96		493		55.85	

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

	A.	LO	CATION
		War	tershed Holston River Lat-Long 360744N - 833818W
		St	ream Holston River "Length of Sample 500'
		Are	ea or Station Site # 1 Reach 06010104-3,4
		Cou	unty Grainger - Jefferson Date/Time 16 July 1987/1000
		Dat	a Collected By Rick D. Bivens and Chester J. Ellison
	В.	РНУ	SICAL CHARACTERISTICS
	-	1.	Average Width 421.6' Average Depth 1.6' Maximum Depth 5.8'
		2.	Estimated Percent of Stream in Pools is%
		3.	Estimated Percent Pool Bottom is Mud 5 % Silt 10 % Sand 70 %
			Clay 5 % Gravel 5 % Rubble 5 % Boulders - %
			Bedrock% Other%
		4.	Estimated Percent Riffle Bottom is Mud - % Silt 10 % Sand 30 %
			Bedrock - % Other Rubble 50% Gravel 10%
		5.	
			Average Scarce
		6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in 60 %
			of stream, Average in 30 %, Poor in 10 %.
		7.	Shade or Canopy Good over 10 % of Stream.
*		8.	Flow (c.f.s.) 647.6: Flow compared to Normal: Low Normal X High
* *		9.	D.O. 6.1 ppm Temp. 61.5°F % Saturation 62.0
	1	LO.	Present Weather Partly cloudy and warm; air temp. 83°F
	1	L1.	Past Weather (last 24 hours) Partly cloudy and cool overnight.
* * *	1	L 2 .	D.O. <u>6.1</u> pH <u>7.3</u> Temp. <u>61.5</u> Conductivity <u>253</u>
	1	.3.	Comments: Sample location just above Nance Ferry at Holston River
			mi. 33.3. * No generation at Cherokee Dam. ** DO taken with
			YSI on 22 July 1987. *** Conductivity and pH taken with Hydrolab
			on 21 July 1987.

TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Hols	ton Rive	er		Lat-Long_	360'	744N - 8	133818W	
Body of Water Ho	lston Ri	ver		Date 21 8	& 22 July	7 1987		
County or River M	iile Grair	iger-Je.	fferson	Reach 060	010104-3	, 4		
Type of Sampling_	Electro	fishin	<u>z</u>	Pool Eleva	ation <u>878</u>	3 1		
Gear Type Boat shock	shocking ing into				5 <u>-1215</u> or 0-1115 or		y 1987 y 1987	
	ECIES	CODE	NUMBER	LENGTH	WT.	*	*	*
Micropterus sa	lmoides	220	1	5	t			
11	11	11	1.	7	0.1			
71	11	tt	1	9	0.35			
Lepomis auritu	s	201	6	2	t			
n n		11	1	4	0.08			
Lepomis macroc	hirus	206	1	2	t			
" "		†1	1	5	0.1			
" "		†1	8	6	1.32			
" "		tt	3	7	0.95			
Morone chrysop	E	222	1	8	0.23			
n n		††	4	9	1.08			
n n		!t	4	10	1.6			
Morone mississ	ippiensi	s 224	37	6	3.6			
"	71	11	17	7	1.81			
11	п	11	2	8	0.35			
Tetalurus pune	tatus	176	2	14	1.88			
11	11	11	1.	15	0.9			
n .	"	11	1	1.6	1.3			
H	11	11	2	18	4.0			
Hypentelium ni	gricans	166	9	1-16	3.85			
Tctiobus niger		179	2	17-19	2.4			
Aplodinotus gr	unniens	20].	15	0.8			
Dorosoma ceped	ianum	48	16	7-10	2.95			
Dorosoma peten	ense	49	1.	6	0.06			
Cont	inued	on	next	page				
* Label Paramete	r Listed				· i			
Field Notes: 50	O' sampl	e lengt	h.		:			
Name of Collecto				David La id Steve		ster J.	Ellison	

WR-C525

TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Holston Riv	er		Lat-Long_	360744N	- 8338	18W	
Body of Water Holston R	iver	*	Date 21	& 22 Jul	у 1987		
County or River Mile Grain	nger-Je	<u>ffers</u> on	Reach 0	6010104-	3,4		
Type of Sampling Electr	ofishin	g	Pool Elev	ation <u>87</u>	81		
Gear Type Boat shocking	g & bac	kpack	Time_101	<u>5-1215 o</u>	n 21 Ju	ly 1987	
shocking int	0 30 8	erne	<u> </u>	0-1115 o	n 22 Ju	Т <u>А</u> ТАВА	
SPECIES Name	CODE	NUMBER	LENGTH	WT.	*	*	*
Cyprinus carpio	47	5	5-24	23.9			
Notropis spilopterus	269	151	1-4	0.2			
Etheostoma blennioides	81	12	3-5	0.33			
Etheostoma rufilineati	ım 108	35	2-4	0.29			
Etheostoma simoterum	111	19	1-2	0.05			
Etheostoma zonale	135	2	2	t			
Percina caprodes	306	1	5	0.05			
Cottus carolinae	40	34	1-3	0.15			

					· · · · · · · · · · · · · · · · · · ·		
							····
							
					· -		
		·····					
					 		
							, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
* Label Parameter Listed		, ,	1	,	* * * * * * * * * * * * * * * * * * *	· · · · · · · · · · · · · · · · · · ·	
Field Notes: 500' sampl	e lengt	· h					
	c renge	,,1,,					
							
Name of Collector(s): Ric					cer J. 1	Ellison,	
JR_C525 Sta	n Lambe	rt, and	Steve S	Strader			

Holston River: Site # 1, Edge Surber sample

16 July 1987

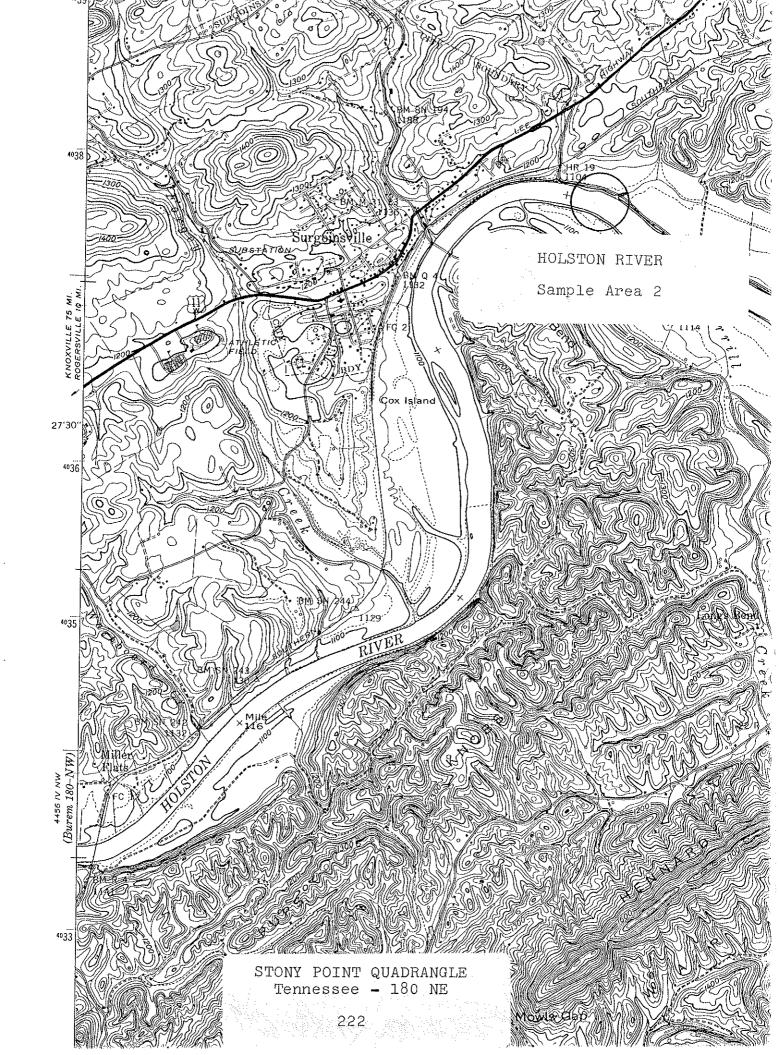
Field # 048

Grainger/Jefferson Co., TN; Nance Ferry at Holston River mi. 33.3. Coordinates: 360744N - 833818W. Luttrell, Tenn., # 155 NW Quad. Reach # 06010104-3,4.

TAXA	NUMBER
DIPTERA: Unidentified pupae Chironomidae Simuliidae larvae pupae adult	2 49 47 14 1
GASTROPODA: Pleuroceridae/Pleurocera canaliculatum	3
ISOPODA: Asellidae/Lirceus	82
OLIGOCHAETA:	11
PELECYPODA: Corbiculade/Corbicula fluminea	14
TRICHOPTERA: Hydropsychidae/Cheumatopsyche Hydroptilidae/Hydroptila Unidentified pupae	6 1 5
	234

Volumetric Displacement was 1.15 ml.

Holston River: Site # 1, Midstream Surber sample


16 July 1987

Field # 048

Grainger/Jefferson Co., TN; Nance Ferry at Holston River mi. 33.3. Coordinates: 360744N - 833818W. Luttrell, Tenn., # 155 NW Quad. Reach # 06010104-3,4.

TAXA	NUMBER
DIPTERA: Unidentified pupa Chironomidae Simuliidae larvae pupae	1 20 15 4
ISOPODA: Asellidae/Lirceus	18
TRICHOPTERA: Hydropsychidae/Hydropsyche Unidentified pupa	1
	 62

Volumetric Displacement was 0.75 ml.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SHRVEY FORM

		INISIOCHEMICAL SIREMI SURVEI FORM
A	. LO	CATION
	Wa	tershed Holston River Lat-Long 362817N - 825022W
	St	ream Holston River Length of Sample 500'
	Ar	ea or Station Site # 2 Reach 06010104-14,0
	Cot	unty Hawkins Date/Time 23 July 1987/1500
		a Collected By Rick D. Bivens and Chester J. Ellison
В	. PH	SICAL CHARACTERISTICS
	1.	Average Width 465! Average Depth 2.9! Maximum Depth 7.5!
		Estimated Percent of Stream in Pools is 30 %
	3.	Estimated Percent Pool Bottom is Mud 10 % Silt 20 % Sand 20 %
		Clay 5 % Gravel 5 % Rubble 15 % Boulders 10 %
		Bedrock 15 % Other - %
	4.	Estimated Percent Riffle Bottom is Mud 5 % Silt 20 % Sand 20
		Bedrock 35 % Other Rubble 20%
	5.	Abundance of Littoral Aquatic Plants is Numerous X
		Average Scarce
	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in 30
		of stream, Average in 40 %, Poor in 30 %.
	7.	Shade or Canopy Good over % of Stream.
*	8.	Flow (c.f.s.) 1618.2 : Flow compared to Normal: Low Normal X High
* *	9.	D.O. 8.0 ppm Temp. 77.2°F % Saturation 97.5
	10.	Present Weather Partly cloudy, hot and humid; air temp. 92°F
	11.	Past Weather (last 24 hours) Partly cloudy, hot and humid.
* * *	12.	D.O. 8.0 pH 8.8 Temp. 77.2 Conductivity
	13.	Comments: Sample location above Surgoinsville Bridge at Holston

River mi. 119.1. * Dependent on discharge from Fort Patrick

Henry Dam. ** DO taken with YSI on 24 July 1987. *** pH taken
with Hach pocket pH meter.

TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Hol				Lat-Long 362817N - 825022W				
Body of Water				Date 24 July 1987				
County or River		~	·····	Reach 0	6010104-1	4,0		
Type of Samplin	g Electro	fishine	5	Pool Elevation 1090'				
Gear Type Boat	shocking		***************************************	Time ll	30 - 1230 a	nd 1500	0-1600	
	sample 1	ength	,	<u> </u>	1		1	T
Name	SPECIES	CODE	NUMBER	LENGTH	WT.	*	*	*
Ambloplites	rupestris	13	1	1.0	0.8			
	11	††	4	8	1.6			
11	11	11	12	7	2.9			
tt.	"	11	9	6	1.4			
n .	"	11	3	5	0.25			
11	11	11	2	14	0.05			
11	11	lt	1	3	t			
Lepomis auri	tus	201	3	7	0.65			
n n		11	6	6	0.9			
n n		Ŧŧ	5	5	0.4			
tt tt		tt.	1.9	4	1.0			
n n		11	4	3	0.1			
Lepomis macro	chirus	206	1.	6	0.15			
Lepomis micro	lophus	209	1	8	0.3			
n	n'	11	1	4	t			
Micropterus d	lolomieui	218	4	11	2.6			
II .	11	††	3	10	1.5			
11	"	11	1	9	0.3			
11	11	tī	1	8	0.2			
"	ıı .	11	1	7	0,2			
н	"	11	2	6	0.18			
11	"	11	8	5	0.71			
"	n l	11].	4	0.04		<u></u>	
11	11	11	1.	3	t			
"	11	!!	9	2	0.06			
Label Paramete	er Listed	****	······	· · · · · · · · · · · · · · · · · · ·		<u>'</u>		· · · · · · · · · · · · · · · · · · ·
Field Notes:		Cont	inued o	n next p	age			

Name of Collector(s): Rick D. Bivens, Chester J. Ellison, Daniel Pollard and Earl Seay

WR-0525

TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Holston Rive			Lat-Long 362817N - 825022W				
Body of Water Holston R		*	Date 24				
County or River Mile Haw			Reach 06	,			
Type of Sampling Electro	fishing		Pool Eleva				
Gear Type Boat shocking	g Joseph J		Time113	0-1230 a	ind 1500-	<u>-1600</u>	
500' sample	rengen	1					
SPECIES Name	CODE	NUMBER	LENGTH	WT.	*	*	*
Ictalurus natalis	174	28	1-11	10.45			\
Ictalurus punctatus	176	1	7	0.1			, <u> </u>
"	IT	3.	17	1.5			
11 11	11	1.	19	1.95			
11 11	11	2	22	8.4			
Carpiodes carpio	28	1.	15	1.7			
Hypentelium nigricans	166	28	7-15	19.9			
Campostoma anomalum	25_	10	2-6	0,45			
Carassius auratus	26	6	10-13	6.45			
Cyprinus carpio	47	9	16-24	43.7			
Hybopsis dissimilis	157	5	<u>l</u> 4	0.1			
Nocomis micropogon	234	224	1-8	15.3			
Notropis chrysocephal	us 249	56	2-6	1.55			
Notropis coccogenis	248	29	1-5	0.4			
Notropis galacturus	253	18	1-3	0.08		ļ	
Notropis spilopterus	269	26	1-4	0.19			
Notropis leuciodus	255	32	1-3	t			
Notropis photogenis	259	1	5	t			
Notropis rubellus	260	33	2	t			
Notropis telescopus	272	3	3	t			
Notropis volucellus	277	9	1-2	t			
Etheostoma blennioide:	81	21	3-5	0.45			<u> </u>
Etheostoma rufilineat	um 108	2	2	t			
Etheostoma simoterum	111	1	2	t			
Etheostoma zonale	135	5	. 3	t	<u> </u>		i
* Label Parameter Listed				:			
Field Notes:							

Name of Collector(s): Rick D. Bivens, Chester J. Ellison, Daniel Pollard, and Earl Seay

₩R-0525

Holston River: Site # 2, Edge Surber sample # 1

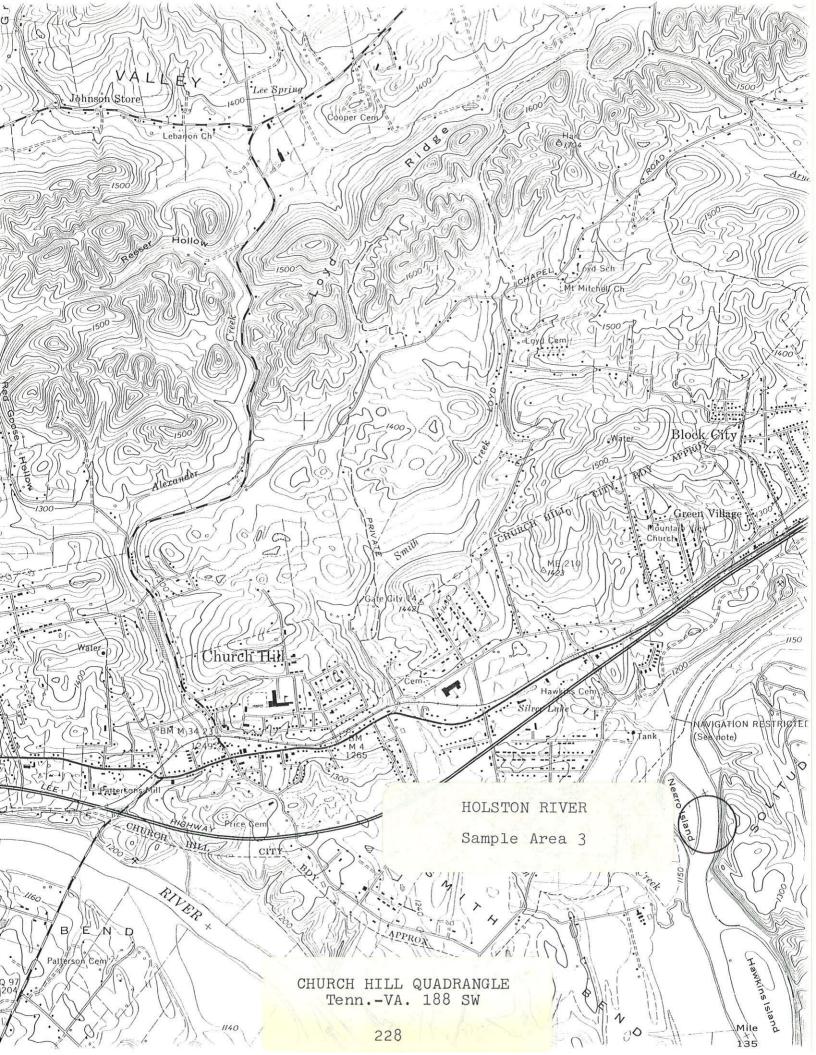
23 July 1987

Field # 052

Hawkins Co., TN; Surgoinsville at Holston River mi. 119.1. Coordinates: 362817N - 825022W. Stony Point, Tenn., # 180 NE Quad. Reach # 06010104-14,0.

TAXA	NUMBER
COLEOPTERA: Elmidae/Stenelmis adult	1
DIPTERA: Chironomidae	1
EPHEMEROPTERA: Caenidae/Caenis Heptageniidae/Heptagenia Stenacron Stenonema Oligoneuriidae/Isonychia	1 6 4 8 1
GASTROPODA: Pleuroceridae/Anculosa subglobosa Pleurocera unciale	8
PELECYPODA: Corbiculidae/Corbicula fluminea	ı
TRICHOPTERA: Hydropsychidae/Cheumatopsyche Hydropsyche Hydroptilidae/Hydroptila	3 2 1
	38

Volumetric Displacement was 0.5 ml.


Holston River: Site # 2, Edge Surber sample # 2

23 July 1987 Field # 052

Hawkins Co., TN; Surgoinsville at Holston River mi. 119.1. Coordinates: 362817N - 825022W. Stony Point, Tenn., # 180 NE Quad. Reach # 06010104-14,0.

TAXA	NUMBER
COLEOPTERA: Elmidae/Stenelmis adult	1
EPHEMEROPTERA: Baetidae/Baetis Caenidae/Caenis Heptageniidae/Heptagenia Stenacron Stenonema GASTROPODA:	2 1 1 6 12
Pleuroceridae/Pleurocera canaliculatum	2
ISOPODA: Asellidae/ <u>Lirceus</u>	1
OLIGOCHAETA:	1
PELECYPODA: Corbiculidae/Corbicula fluminea	1
TRICHOPTERA: Hydropsychidae/Cheumatopsyche	3
	31

Volumetric Displacement was 0.25 ml.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

Α.	LO	CATION
	Wat	tershed Holston River Lat-Long 363108N - 824047W
	Sti	ream Holston River "Length of Sample 500'
	Are	ea or Station Site # 3 Reach 06010104-14,2
	Cou	nty Hawkins Date/Time 4 August 1987/1900
	Dat	a Collected By Rick D. Bivens and Chester J. Ellison
В.	РНУ	SICAL CHARACTERISTICS
÷	1.	Average Width 417.5! Average Depth 2.3! Maximum Depth 6' est.
	2.	Estimated Percent of Stream in Pools is30 %
	3.	Estimated Percent Pool Bottom is Mud 20 % Silt 20 % Sand 20 %
		Clay 5 % Gravel 15 % Rubble 15 % Boulders _ %
		Bedrock 5 % Other - %
	4.	Estimated Percent Riffle Bottom is Mud 10 % Silt 20 % Sand 20 %
		Bedrock - % Other Rubble 30% Gravel 20%
	5.	Abundance of Littoral Aquatic Plants is Numerous X
		AverageScarce
	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in 30 %
		of stream, Average in50%, Poor in20%.
	7.	Shade or Canopy Good over 10 % of Stream.
*	8.	Flow (c.f.s.) 2605.2 : Flow compared to Normal: Low Normal X High
* *	9.	D.O. 6.1 ppm Temp. 68.7°F % Saturation 67.5
	10.	Present Weather Clear, hot, and humid.
	11.	Past Weather (last 24 hours) Clear, hot, and humid

*** 12. D.O. <u>6.1</u> pH <u>7.6</u> Temp. <u>68.7</u> Conductivity ____

13. Comments: Sample location at Negro Island, Holston River mi, 135.9.

* During generation from Fort Patrick Henry Dam. ** DO taken

with YSI on 5 August 1987. *** pH taken with pocket pH meters

on 5 August 1987 and is average of two readings.

TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed H	Molston Riv	er		Lat-Long_	363108N	- 8240	47W	
Body of Water	Holston R	iver	· · · · · ·	Date 5 A	ugust 19	87		
County or Riv	er Mile Haw	kins		Reach 0	6010104-	14,2		
Type of Sampl:	ing Electro	fishing		Pool Elev	ation <u>l</u>	138'		
Gear Type Boa sho	t shocking cking on r	and ba iffle a	<u>ckpac</u> k reas.	Time]]]	5-1215_a	nd 1430	-1530	
Name	SPECIES	CODE	NUMBER	LENGTH	WT.	*	*	*
Ambloplites	rupestris	13	2	9	1.15			
11	"	Ħ	10	8	4.0			
11	11	n	12	7	3.3			
11	n	tt.	15	6	3.15			
ıı.	ri .	11	3	5	0.3			
11	11	11	9	4	0.5			
11	п	T†	1	2	t			
II.	n	tr	1	1	t			
Lepomis aur	itus	201	1	8	0.4			
11	и .	11	3	7	0.9			
11	11	11	6	6	1.3			
n .	11	Τ1	7	5	0.9			
n .	ıı	ft	5	4	0.25			
11	11	Ħ	2	3	0.1			
Micropterus	dolomieui	218	1	12	0.8			
tt .	11	11	3	10	1.6			
11	11	† į	2	8	0.59			
n	"	11	1	7	0.18			
11	11	11	ŽĮ.	6	0.45			
11	"	11	10	3	0.2			
11	п	11	14	2	0.15			
Cetalurus ne	atalis	174	4	4-11	2.1			
Cetalurus pi		176	2	22	6.15	······································		
"	"	11	1	1.9	2.4	· · · · · · · · · · · · · · · · · · ·		
Carpiodes co	rpio	28	1.	17	2.2			
* Label Param		<u></u>		d on nex				
Field Notes:				a on nex	n hake	12-14-14-14-14-14-14-14-14-14-14-14-14-14-		

Name of Collector(s): Rick D. Bivens, Chester J. Ellison, and Carl Williams.

WR-0525

TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Holston Rive	Lat-Long 363108N - 824047W						
Body of Water Holston	Date 5 August 1987						
County or River Mile Hawl	Reach 06010104-14,2						
Type of Sampling Electro	ofishin	g	Pool Elev	ation]	1138'		
Gear Type Boat shocking shocking on ri	and ba iffle a	<u>ckpac</u> k reas.	Time]]]	5-1215 8	and 1430-	-1530	
SPECIES Name	CODE	NUMBER	LENGTH	WT.	*	*	*
Hypentelium nigricans	166	13	3-13	4.45			
Moxostoma duquesnei	229	8	3-16	5.45			
Dorosoma cepedianum	48	1	11	0.7			
Campostoma anomalum	25	42	2-6	0.95			
Cyprinus carpio	47	3	14-21	10.0			
Hybopsis dissimilis	157	4	2-4	t			
Nocomis micropogon	234	35	2-5	0.3			
Notropis coccogenis	248	15	2	t			
Notropis galacturus	253	27	2-5	0.35			
Notropis leuciodus	255	64	2-3	0.1			
Notropis rubellus	260	9	2-3	t			
Notropis sp. cf.							
Notropis spectruncul	is 266	1	2	t			
Notropis spilopterus	269	1	3	t			
Notropis telescopus	272	55	2	0.1			
Phenacobius uranops	330	3	4	t			
Etheostoma blennioides	81	7	2-5	0.12			
Etheostoma camurum	85	7	2	t			
Etheostoma camurum X							
E. rufilineatum	_	5	2	t			
Etheostoma rufilineatu	m 108	60	2	0.16			
Stheostoma zonale	135	3	2-3	t '			<u> </u>
Cottus carolinae	40	10	2-3	0.1		······································	
* Label Parameter Listed							
Field Notes:			<u></u>			<u>,</u>	<u></u>
Name of Collector(s): Ric	k D. Ri	vens (hester .	I Fllia	on and	Coal W	1773

WR-0525

Holston River: Site # 3, Edge Surber sample

5 August 1987

Field # 056

Hawkins Co., TN; Church Hill at Holston River mi. 135.9. Coordinates: 363108N - 824047W. Church Hill, Tenn.-VA., # 188 SW Quad. Reach # 06010104-14,2.

TAXA	NUMBER
COLEOPTERA: Elmidae/Stenelmis larva	1
DIPTERA: Unidentified pupae Chironomidae Tipulidae/Antocha larvae pupa	6 62 16 1
EPHEMEROPTERA: Unidentified adult Baetidae/Baetis Caenidae/Caenis Ephemerellidae/Serratella Heptageniidae/Stenonema Tricorythidae/Tricorythodes	1 1 2 7 5
GASTROPODA: Ancylidae/Ferrissia Physidae/Physa	1
LEPIDOPTERA: Pyralidae/Petrophila	1
PELECYPODA: Corbiculidae/Corbicula fluminea	1
TRICHOPTERA: Hydropsychidae/Hydropsyche H. frisoni Unidentified pupa	3 2 1 2
TURBELLARIA:	133

Volumetric Displacement was 1.0 ml.

Holston River: Site # 3, Midstream Surber sample

5 August 1987

Field # 056

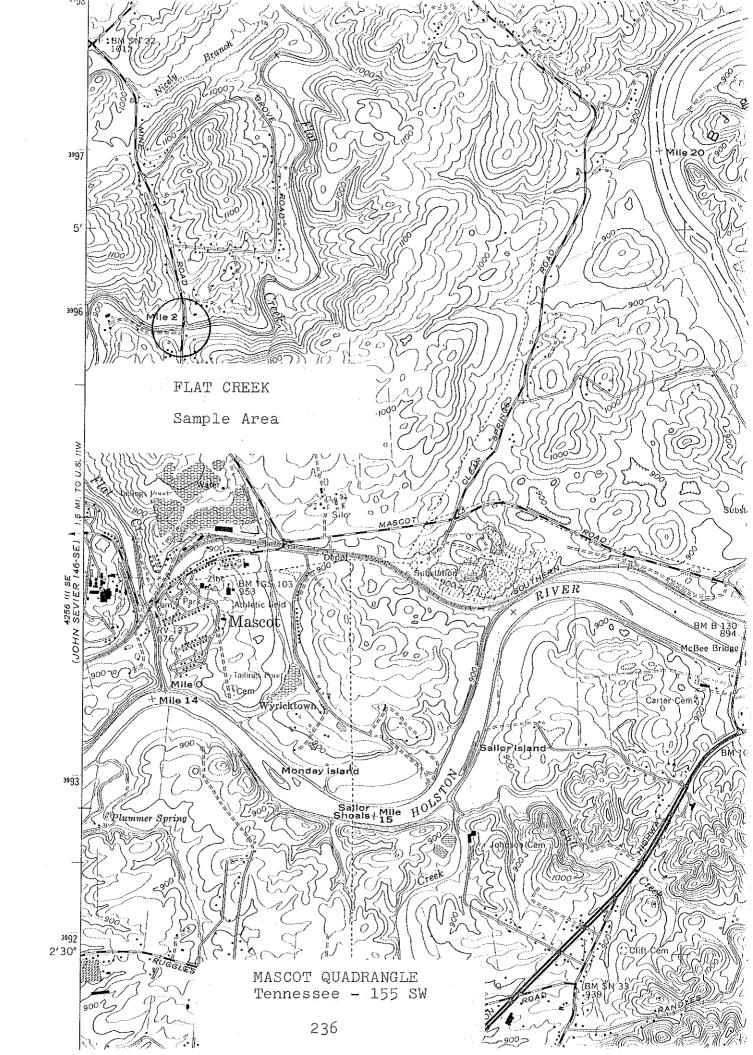
Hawkins Co., TN; Church Hill at Holston River mi. 135.9. Coordinates: 363108N - 824047W. Church Hill, Tenn.-VA., # 188 SW Quad. Reach # 06010104-14,2.

TAXA	NUMBER
COLEOPTERA: Elmidae/Stenelmis adult	1
DIPTERA: Chironomidae Simuliidae Tipulidae/Antocha larva pupa	13 24 1 1
EPHEMEROPTERA: Baetidae/Baetis Heptageniidae/Stenonema Tricorythidae/Tricorythodes	4 3 3
GASTROPODA: Pleuroceridae/Anculosa subglobosa Pleurocera unciale	6 3
OLIGOCHAETA:	1
TRICHOPTERA: Hydropsychidae/Hydropsyche Unidentified pupae Hydroptilidae/Hydroptilia Unidentified pupa Psychomyiidae/Psychomyia flavida	1 2 1 1
	66

Volumetric Displacement was 0.5 ml.

Flat Creek

- One qualitative fishery survey was conducted in September 1986:
- Location and Length Tributary to the Holston River. The sample area was located at the bridge on Mine Road near Mascot and was sampled on 16 September 1986. It was 200 ft. in length and averaged 39.3 ft. in width. The site was in Knox County. Mascot Quadrangle.
- Gear Type The site was sampled using backpack electrofishing equipment. Only one shocker, operating at 110 v. AC, was used at this site.
- Water Quality Data were taken from midstream with a 4041
 Hydrolab. On 16 September 1986: DO 7.9 ppm, pH 7.6,
 Temperature 68.4 F, Conductivity 350 micromhos/cm.
- Benthos Collection Benthic organisms were collected from two square-foot Surber samples at the site. The samples averaged 38 organisms, 0.4 ml. volumetric displacement, and represented 14 different taxa.


Fish Collected:

Species	No.	% by No.	Wt.	% by Wt.
Smallmouth bass Rock bass Bluegill	2 17 1	0.7 6.3 0.4	0.7 2.55 t	9.4 34.2
Redbreast sunfish	3	1.1	0.3	4.0
Nongame Fish Forage Fish	16 229	6.0 85.4	1.6 2.3	21.5 30.9
Total	268		7.45	

Comments - This stream was surveyed primarily to develop a fish species diversity list and collect stream information for TADS. Game fish included smallmouth bass (Micropterus dolomieui), rock bass (Ambloplites rupestris), bluegill (Lepomis macrochirus), and redbreast sunfish (L. auritus). Rock bass were the principle game fish and made up about 74% of the total number of game fish collected. This stream has also has a history of trout stocking from private applications, however, we found no trout in the area sampled.

The stream receives fairly heavy siltation pollution mainly from agricultural sources throughout the watershed. We collected a total of 15 fish species from the sample site, most of which are species components of streams that exhibit typical non-point-source pollution.

Benthic macroinvertebrates from our samples included Heptageniidae and Potamanthidae mayflies, Elmidae and Psephenidae beetles, and the perlid stonefly Neoperla clymene. Asian clams (Corbicula fluminea) and river snails (Anculosa subglobosa and Pleurocera unciale) were present.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

Α.	LOCA	${\tt TION}$

	Wat	tershead Holston River	Lat-Long 360438N - 834437W
	Sti	ream Flat Creek	Length of Sample 200 t
	Are	ea or Station Mine Road Bridge	Reach 06010104-19,0
	Cou	untyKnox	Date/Time 16 September 1986/1030
	Dat	a Collected By Rick D. Bivens an	d Chester J. Ellison
В.	PHY	SICAL CHARACTERISTICS	
	1.	Average Width 39.3' Average I	Depth 0.5' Maximum Depth 1.6'
•	2.	Estimated Percent of Stream in Pools	s is 40 %.
	3.	Estimated Percent Pool Bottom is Muc	i <u>10 % Silt 50 % Sand 20 %</u>
		Clay % Gravel <u>10</u> % Rubb	ole_5% Boulders5_%
		Bedrock - % Other - %	
	4.	Estimated Percent Riffle Bottom is M	Mud 5 % Silt 10 % Sand 30 %
		Bedrock - % Other Rubble	65%
	5.		is Numerous
		Average	Scarce X
	6.	Cover Abundance (overhanging banks,	logs, roots, etc.) is Good in 25 %
		of Stream, Average in50	_%, Poor in25%
	7.	Shade or Canopy Good over 80	% of Stream; Interferes little
		(degree) with any (t	ype) of fishing.
	8.	Flow (c.f.s.) 9.4: Flow compare	d to Normal: Low X Normal High
	9.	D.O. 79 ppm Temp	. <u>68.4°F</u> % Saturation <u>87</u>
1	0.	Present Weather Cloudy	
1	1.	Past Weather (last 24 hours) Cloud	ly with light rain showers.
1	2.	D.O. <u>7.9</u> pH <u>7.6</u> Temp. <u>68.4</u> Condu	ctivity 350
1	3:	Comments: Sample location just	below the bridge on Mine Road
		near Mascot. This stream appe	ears to be a good rock bass stream.

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Holston River	Lat-Long 360438N - 834437W
Body of Water Flat Creek	Date 16 September 1986
County or River Mile Knox	Reach 06010104-19,0
Type of Sampling Electrofishing	Pool Elevation 8921
Gear Type Backpack Shocker	Time 1330-1430
200! sample length	1

	CIES	CODE	NUMBER	LENGTE	wr.	*	*	*
Name				<u> </u>			1	
Ambloplites ri	l.	13	14	2	0.1		! 	
11	11	ft	2	14	1 0.2		1	
††	f ī	ţţ	6	5	0.6	,,,,	1	
tt	!1	11	11	6	0.2		1	
TT	11	11	3	8	0.95		ļ	
11	î î	11	11	9	0.5			
Lepomis auritu	นธ	201	1	6	0.2			
11 11		tt .	11	4	0.1	ł /	<u> </u>	_
11 11		11	1	1 1	t		<u> </u>	
Lepomis macro	chirus	206	1]	<u>t</u>			
Micropterus do	olomieui	218	1	10	0.5		<u> </u>	
II.	11	11	1	6	0.2			
Hypentelium ni	igricans	166	16	3-10	1.6			
Campostoma and	omalum	25	20	2-7	0.3	.		
Nocomis microp	ogon	234	12	2-8	0.85			
Notropis cocco	ogenis	248	79	2-5	0.4	<u> </u>	İ	
Notropis chrys	socephal	us 249	36	1-5	0.25		<u> </u>	
Pimephales not	tatus	334	4	2-3	<u>t</u>			i .
Etheostoma ble	ennioide	3 81	15	2-5	i 0.2	1		
Etheostoma jes	siae	96	2	2	t	1 :		
Etheostoma ruj	filineat	um 108	26	2-3	0.1	1 1	!	<u> </u>
Etheostoma sin	noterum	111	24	1-2	0.05	ŀ		_
Cottus carolin	1 <i>ае</i>	40	11.	2-4	0.15			
	<u> </u>				Ì	1	1	1
	······································				!	-		l

* Label Parameter Listed

Field Notes: Local resident says catfish are caught here, but we collected none. Saw several fish escape capture.

Name of Collector(s): Rick D. Bivens and Chester J. Ellison

WR-0525

Flat Creek: Edge Surber sample

16 September 1986

Field # 012

Knox Co., TN; Below the bridge on Mine Road near Mascot. Coordinates: 360438N - 834437W. Mascot, Tenn., # 155 SW Quad. Reach # 06010104-19,0.

TAXA	NUMBER
COLEOPTERA: Elmidae/Optioservus larvae Stenelmis larva Psephenidae/Psephenus herricki	3 1 5
DIPTERA: Tipulidae/Antocha pupa	1
GASTROPODA: Pleuroceridae/Anculosa subglobosa Pleurocera unciale	11 9
LEPIDOPTERA: Pyralidae/Petrophila	2
PELECYPODA: Corbiculidae/Corbicula fluminea	3
PLECOPTERA: Perlidae/Neoperla clymene	2
	37

Volumetric Displacement was 0.25 ml.

Flat Creek: Midstream Surber sample

16 September 1986

Field # 012

Knox Co., TN; Below the bridge on Mine Road near Mascot. Coordinates: 360438N - 834437W. Mascot, Tenn., # 155 SW Quad. Reach # 06010104-19,0.

TAXA	NUMBER
COLEOPTERA: Elmidae/Stenelmis larvae Psephenidae/Psephenus herricki	2 7
DIPTERA: Tipulidae/ <u>Limnophila</u>	1
EPHEMEROPTERA: Heptageniidae/Stenacron Potamanthidae/Potamanthus	1 2
GASTROPODA: Pleuroceridae/Anculosa subglobosa Pleurocera unciale	6 14
MEGALOPTERA: Corydalidae/Nigronia serricornis	1
PELECYPODA: Corbiculidae/Corbicula fluminea Sphaeriidae/Sphaerium	3 1
	38

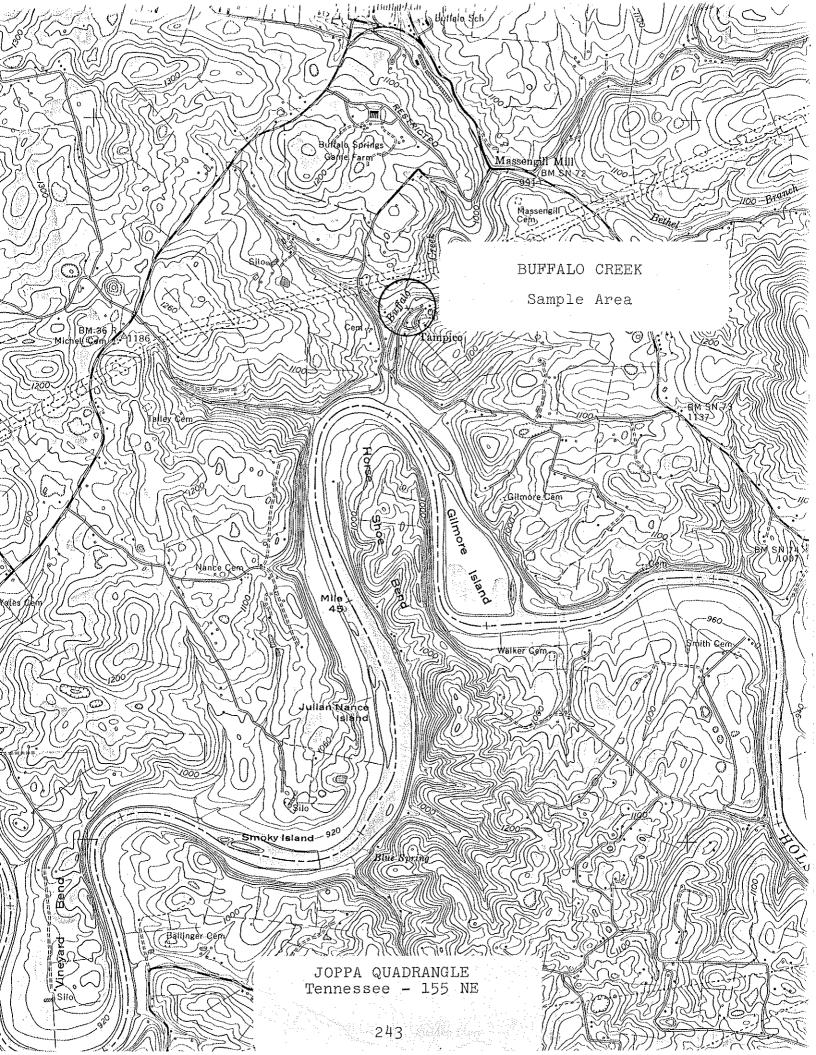
Volumetric Displacement was 0.5 ml.

Buffalo Creek

One qualitative fishery survey was conducted in April 1987:

- Location and Length Tributary to the Holston River. The sample area was located 0.4 mi. upstream of the mouth, near Tampico Church, and was sampled on 28 April 1987. It was 200 ft. in length and averaged 29 ft. in width. The stream was slightly higher than normal when sampled. The site was in Grainger County. Joppa Quadrangle.
- Gear Type The site was sampled using backpack electrofishing equipment. Only one shocker, operating at 110 v. AC, was used.
- Water Quality Data were taken from midstream with a 4041 Hydrolab. On 28 April 1987: DO 9.8 ppm, pH 7.9, Temperature 61.7 F, Conductivity 310 micromhos/cm.
- Benthos Collection Benthic organisms were collected from two square-foot Surber samples at the site. The samples averaged 131 organisms, 2.3 ml. volumetric displacement, and represented 27 different taxa. One qualitative sample was collected upstream of Buffalo Springs Trout Hatchery. This sample contained 94 organisms and represented 19 different taxa.

Fish Collected:


<u>Species</u>	No.	% by No.	Wt.	% by Wt.
Rainbow trout	6	3.5	3.9	39.2
Nongame Fish Forage Fish	11 153	6.5 90.0	3.9 2.15	39.2 21.6
Total	170		9.95	

Comments - This stream was surveyed primarily to develop a fish species diversity list and collect stream information for TADS. Rainbow trout (Salmo gairdneri) were the only game fish collected from this site. These were stocked fish from Buffalo Springs Hatchery which is located approximately 1.0 air mile upstream. The stream is periodically stocked throughout the year and is open to trout fishing from the Massengill Mill Dam downstream to the Holston River. Habitat improvements and structures would greatly benefit this stream.

Only nine endemic species were collected with the

blacknose dace (*Rhinichthys atratulus*) being the most common. Typical non-point-source siltation from varied agricultural sources throughout much of the watershed along with allochthonous enrichment from the hatchery has resulted in a fish fauna primarily dominated by tolerant species.

Benthic macroinvertebrates from our samples included Baetidae, Ephemeridae, Heptageniidae, Leptophlebiidae, and Oligoneuriidae mayflies, Brachycentridae, Glossosomatidae, Hydropsychidae, Limnephilidae, Philopotamidae, Polycentropodidae, and Psychomyiidae caddisflies, and water penny beetles (Pspehenus herricki). Isonychia mayflies were very abundant as were periwinkle snails (Goniobasis simplex). One specimen of Symphitopsyche etnieri was collected from the upstream qualitative sample. Buffalo Creek is the type locality and to date the only collection locality for this species (Schuster and Etnier 1978; Schefter and Wiggins, 1986).

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

Α.	т	OC.	ለ ጣ	T	ΔN	ľ
Α.	دا	UU	ΑΙ	E	UΝ	ł

	Wat	tershead Holston River Lat-Long 361149N - 833342W
•	Str	ream Buffalo Creek Length of Sample 200†
	Are	ea or Station 0.4 mi. above mouth Reach 06010104-
	Cou	nty Grainger Date/Time 28 April 1987/1315
	Dat	a Collected By Rick D. Bivens and Chester J. Ellison
В.	PHY	SICAL CHARACTERISTICS
	1.	Average Width 29.0 Average Depth 0.8 Maximum Depth 3.4
•	2.	Estimated Percent of Stream in Pools is 40 %.
	3.	Estimated Percent Pool Bottom is Mud 30 % Silt 40 % Sand 5 %
		Clay 5 % Gravel 5 % Rubble 5 % Boulders 10 %
		Bedrock - % Other - %
	4.	Estimated Fercent Riffle Bottom is Mud 5 % Silt 10 % Sand 10 %
		Bedrock - % Other Rubble 50% Boulders 25%
	5.	Abundance of Littoral Aquatic Plants is Numerous
		Average X Scarce
	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in 50 %
		of Stream, Average in 25 %, Poor in 25 %
	7.	Shade or Canopy Good over 50 % of Stream; Interferes little
		(degree) with any (type) of fishing.
	8.	Flow (c.f.s.) 24.1: Flow compared to Normal: Low Normal High X
	9.	D.O. 9.8 ppm Temp. 61.7°F % Saturation 100
]	10.	Present Weather Clear and mild, air temp. 68°F
]	L1.	Past Weather (last 24 hours) Clear and mild.
1	L2.	D.O. <u>9.8</u> pH <u>7.9</u> Temp. 61.7 Conductivity <u>310</u>
J	L3:	Comments: Sample location 0.4 mi. above the mouth of the stream.
		Siltation from agricultural practices is fairly heavy. Two
		species of water cress present. Stream was 6 to 8 in. high
		when surveyed.

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed	Holston River	Lat-Long <u>361149N - 833342W</u>
Body of Wate	r Buffalo Creek	Date 28 April 1987
County or Ri	ver Mile Grainger	Reach 06010104-
	ling Electrofishing	Pool Elevation 927'
	Backpack Shocker	Time 1415-1500
	2001 sample length	

SPE:	CIES CODE	NUMBER	LENGTE	WI.	*	*	*
Salmo gairdner	i 353	1	9	0.3			
11 !1	11	1	10	1.5			
11 11	11	3	11	1.5			
11 11	11	1	1.2	0.6			
Catostomus com	mersoni 32	3	5-8	0.4			
Hypentelium ni	gricane 166	8	2-16	3.5			<u> </u>
Campostoma and	malum 25	25	2-6	1.0			
Votropis spilo	pterus 269	1	24	t			
Rhinichthys at	i	92	2-4	0.9	,		<u> </u>
Etheostoma ble	nnioides 81	1	4	0.05			
Etheostoma sim	oterum 111	29	1-2	0.1			<u> </u>
Cottus carolin	ae 40	5	J4	0.1			ļ
			Į				
							<u> </u>
							İ
							i
							1
							İ
		<u> </u>					i
				<u> </u>			
						<u> </u>	:

ı.	Labal	Parameter	ligrad
_	Lanet	rarametati	FT2 FEG

Field Notes: 0	ne river	chub (Nocomi	s micropogon) wa	as collected	and released
without taki	ng length	and weight.	*Rainbow trout	are stocked	fish.
Name of Collect	or(s):Ri.c.	k D. Bivens	and Chester J. I	Ellison	

WR-C525

Buffalo Creek: Edge Surber sample

28 April 1987

Field # 033

Grainger Co., TN; About 0.4 mi. upstream of the mouth. Coordinates: 361149N - 833342W. Joppa, Tenn., # 155 NE Quad. Reach # 06010104-.

AXAT	NUMBER
COLEOPTERA: Psephenidae/Psephenus herricki	14
DIPTERA: Chironomidae Tipuliade/Antocha Pseudolimnophila	1 2 1
EPHEMEROPTERA: Baetidae/Baetis Ephemeridae/Ephemera Heptageniidae/Epeorus (Iron) Heptagenia Stenacron Stenonema Leptophlebiidae/Habrophlebiodes	2 5 1 2 2 7 3
GASTROPODA: Pleuroceridae/Goniobasis simplex	15
ISOPODA: Asellidae/Lirceus	22
MEGALOPTERA: Sialidae/Sialis	1
OLIGOCHAETA:	3
PLECOPTERA: Perlidae (early instars)	2
TRICHOPTERA: Glossosomatidae/Glossosoma pupa Hydropsychidae/Cheumatopsyche Hydropsyche pupae Limnephilidae/Neophylax	1 1 2 11
	98

Volumetric Displacement was 1.9 ml.

Buffalo Creek: Midstream Surber sample

28 April 1987

Field # 033

Grainger Co., TN; About 0.4 mi. upstream of the mouth. Coordinates: 361149N - 833342W. Joppa, Tenn., # 155 NE Quad. Reach # 06010105-.

TAXA	NUMBER
COLEOPTERA: Psephenidae/Psephenus herricki	30
DIPTERA: Chironomidae larvae pupa Tipulidae/Antocha larva pupa Empididae	4 1 1 1
EPHEMEROPTERA: Baetidae/Baetis Ephemerelliade/Ephemerella Ephemeridae/Ephemera Heptageniidae/Epeorus (Iron) Heptagenia Stenonema Oligoneuriidae/Isonychia	15 3 4 6 1 15 2
GASTROPODA: Pleuroceridae/Goniobasis simplex	33
ISOPODA: Asellidae/ <u>Lirceus</u>	10
MEGALOPTERA: Corydalidae/Nigronia serricornis	1
OLIGOCHAETA:	5
PLECOPTERA: Perlidae (early instar)	1

cont.

Buffalo Creek: Midstream Surber sample cont.

TAXA	NUMBER
TRICHOPTERA: Hydropsychidae/Cheumatopsyche larvae pupae Hydropsyche pupae Limnephilidae/Neophylax Philopotamidae/Chimarra larvae pupae Polycentropodidae/Polycentropus larvae pupa Psychomyiidae/Psychomyia flavida	9 6 3 1 2 4 2 1
	163

Volumetric Displacement was 2.75 ml.

Buffalo Creek: Qualitative sample

30 July 1987

Field # 054

Grainger Co., TN; Downstream of bridge on Indian Ridge Road. Coordinates: 361248N - 833347W. Joppa, Tenn., # 155 NE Quad. Reach # 06010104-.

TAXA	NUMBER
AMPHIPODA: Gammaridae/Gammarus	52
BRANCHIOBDELLIDA:	1
DIPTERA: Ceratopogonidae/Bezzia pupa Chironomidae Tipulidae/Antocha Tipula	1 4 1 1
EPHEMEROPTERA: Baetidae/Baetis	3
GASTROPODA: Pleuroceridae/Goniobasis simplex	4
ISOPODA: Asellidae/Lirceus	3
MEGALOPTERA: Corydalidae/Nigronia serricornis	14
PLECOPTERA: Perlodidae/Isoperla	4
TRICHOPTERA: Brachycentridae/Micrasema Glossosomatidae/Glossosoma Hydropsychidae/Cheumatopsyche Hydropsyche betteni/depravata Symphitopsyche etnieri S. sparna Limnephilidae/Neophylax Philopotamidae/Chimarra larvae pupa	5 3 21 10 1 3 2

95

Poor Valley Creek

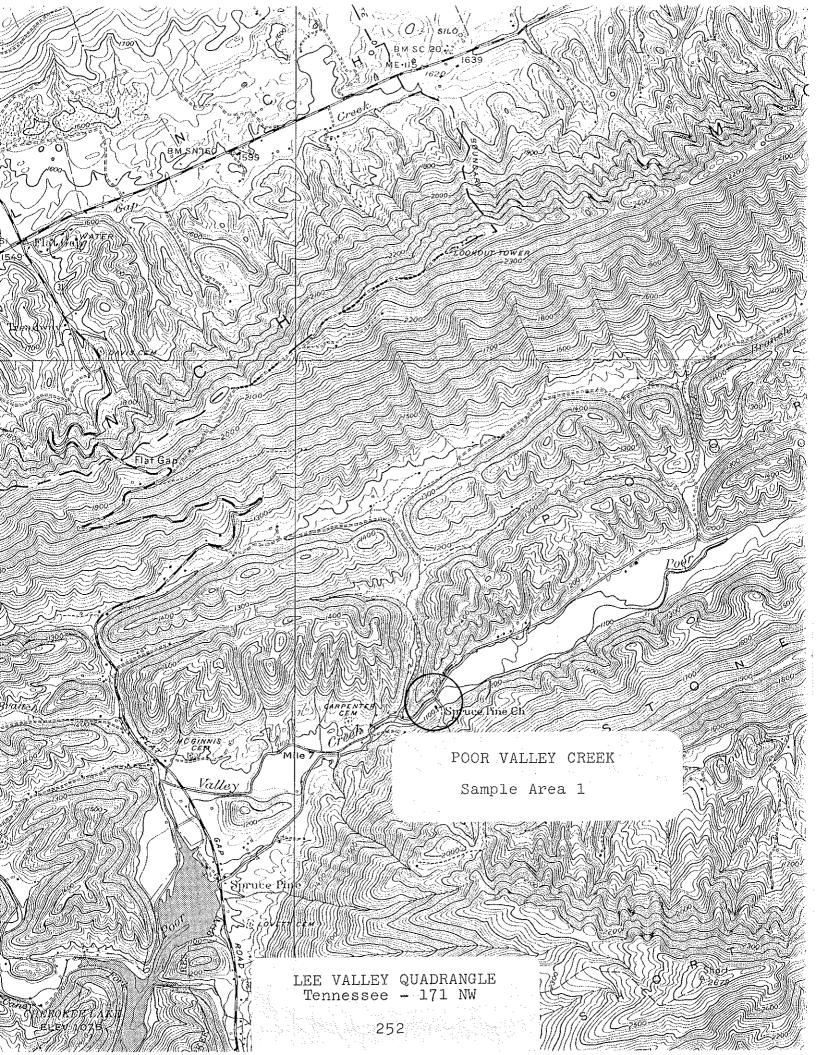
Two qualitative fishery surveys were conducted in August 1987:

- Location and Length Tributary to the Holston River (Cherokee Reservoir). Sample area 1 was at the Old Spruce Pine Church. The sample area was 300 ft. in length and averaged 30.2 ft. in width. Sample area 2 was at the third bridge upstream of Cherokee Reservoir on Poor Valley Road. The sample area was 300 ft. in length and averaged 13.3 ft. in width. Both sites were sampled on 25 August 1987 and were in Hawkins County. Lee Valley Quadrangle.
- Gear Type Both sites were sampled using backpack electrofishing equipment. Each area was sampled with two shockers, operating side by side, at 110 v. AC.
- Water Quality Data were taken from midstream with a Model 58 YSI meter and by averaging readings of two pocket pH meters, on 25 August 1987. Area 1: DO 6.6 ppm, pH 7.3, Temperature 65.3 F. Area 2: DO 9.4 ppm, pH 7.4, Temperature 74.4 F.
- Benthos Collection Benthic organisms were collected from two square-foot Surber samples at each site. The edge sample from area 1 was inadvertently lost. The midstream sample had 45 organisms, 0.5 ml. volumetric displacement, and represented 13 different taxa. Area 2 averaged 37 organisms, 0.4 ml. volumetric displacement, and represented 21 different taxa.

Fish Collected:

	Area 1				Area 2					
Species	No.	% by No.	Wt.	% by Wt.	No.	% by No.	Wt.	% by Wt.		
Spotted bass Largemouth bass Rock bass	2 8 2	1.3 5.1 1.3	0.8 2.95 0.85	3.9 14.4 4.2	7 9	1.3 1.7	1.0	7.5 0.7		
Bluegill Redbreast sunfish Warmouth	19 67 6	12.0 42.4 3.8	1.38 3.85 0.32	6.7 18.1 1.6	3 125	0,6 22.9	t 3.33	24.9		
Nongame Fish Forage Fish	33 21	20.9	10.3 t	50.4	45 356	8.3 65.3	4.95 3.99	37.0 29.8		
Total	158		20.45		545		13.37			

Comments:


This stream was surveyed primarily to establish fishery diversity present before any construction of a proposed impoundment for rearing and release of fish into Cherokee Reservoir. At this time the project is still under proposal.

A variety of game fish from Poor Valley Creek including largemouth bass (*Micropterus salmoides*), spotted bass (*M. punctulatus*), rock bass (*Ambloplites rupestris*), redbreast sunfish (*Lepomis auritus*), warmouth (*L. gulosus*), and bluegill (*L. macrochirus*) were collected. Redbreast sunfish made up about 65% at the lower site and about 85% at the upper site of all the game fish collected. Warmouth were collected from the downstream area only, along with a single flathead catfish (*Pylodictis olivaris*), and no rock bass were collected at the upper sample area.

One species to note was the dusky darter (*Percina sciera*). Although widely distributed and abundant throughout much of the state, this darter is not commonly encountered in east Tennessee streams. A combined total of 26 fish species was collected from the two sites.

This is a very low gradient, turbid stream and non-point-source siltation is fairly heavy. This is typified by the presence of large numbers of tolerant cyprinids such as the striped shiner (Notropis chrysocephalus), whitetail shiner (N. galacturus), and bluntnose minnow (Pimephales notatus) and the absence of intolerant species. Anchor parasites (Lernaea sp.) were found on several fish and leeches were noted on the fins of other fish collected. Also, many of the fish had sores on them and several appeared to be in poor condition.

Benthic macroinvertebrates from our samples included representatives of Baetidae, Ephemeridae, Heptageniidae, and Oligoneuriidae mayflies, Hydropsychidae and Limnephilidae caddisflies, and Elmidae and Psephenidae beetles. Asian clams (Corbicula fluminea) and the river snail (Pleurocera unciale) were also present.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

Α.	LOG	CATION
	Wat	tershed Holston River Lat-Long 362351N - 831154W
	Stx	ream Poor Valley Creek Length of Sample 300
	Are	ea or Station Site # 1 Reach 06010104-17,1
	Cou	nty Hawkins Date/Time 25 August 1987/1030
	Dat	a Collected By Wayne Schacher, Rick D. Bivens, and Chester J. Ellison
в.	PHY	SICAL CHARACTERISTICS
	1.	Average Width 30.2' Average Depth 1.3' Maximum Depth 3.5'
	2.	Estimated Percent of Stream in Pools is 60 %
	3.	Estimated Percent Pool Bottom is Mud 5 % Silt 10 % Sand 15 %
		Clay - % Gravel 5 % Rubble 60 % Boulders 5 %
		Bedrock - % Other - %
*	4.	Estimated Percent Riffle Bottom is Mud _ % Silt _ % Sand _ %
		Bedrock _ % Other
	5.	Abundance of Littoral Aquatic Plants is Numerous X
		Average Scarce
	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in 85 %
		of stream, Average in
	7.	Shade or Canopy Good over60 % of Stream.
	8.	Flow (c.f.s.) 10.9 : Flow compared to Normal: Low X Normal High
	9.	D.O. 6.6 ppm Temp. 65.3°F % Saturation 71.6
	10.	Present Weather Overcast and warm.
	11.	Past Weather (last 24 hours) Overcast and warm.
ŧ *	12.	D.O. <u>6.6</u> pH <u>7.3</u> Temp. <u>65.3</u> Conductivity
	13.	Comments: Turbid, silty suspension. * No true riffle area found in
		this section. Very low gradient stream. ** DO taken with YSI,
		pH is average of two meter readings with pocket pH meters.

Sample location at old footbridge columns at Old Spruce Pine Church.

FISH FIELD DATA FORM

TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Holston Rive	r,		Lat-Long 362351N - 831154W						
Body of Water Poor Valle									
County or River Mile Haw		Reach 06010104-17,1							
Type of Sampling Electro	fishing	5	Pool Eleva	ation <u>l</u>	0851				
Gear Type Two backpack side @ 110 v.	shocker	rs side '	Time 1100)-1145					
SPECIES Name	CODE	NUMBER	LENGTH	WT.	*	*	*		
Ambloplites rupestris	13	1	9	0.45					
n n	11	1	8	0.4					
Micropterus punctulati	s 219	1	10	0.5					
11 11	11	1	9	0.3					
Micropterus salmoides	220	<i>l</i> .j	11	2.3					
$\frac{1}{n}$ n	11	1	10	0.6					
n n	11	3	3	0.05	-				
Lepomis auritus	201	2	11	t					
n n	11	18	2	0.1					
n n	11	10	3	0,2					
п п	11	13	1 4	0.5					
n n	11	14	5	1.5					
11 11	11	8	6	1.1					
11 11	11	1	7	0.2					
11 11	11	1	8	0.25					
Lepomis gulosus	204	2	2	0.05					
n "	11	1	14	0.05					
11 11	1!	3	5	0.22					
Lepomis macrochirus	206	7	2	0.1					
" "	11	9	5	0.83					
и	11	3	6	0.45					
Aplodinotus grunniens	20	2	13-14	1.95					
Pylodictis olivaris	346	1	8	0.25					
190000000000000000000000000000000000000									
Continued	on	next	page						

^{*} Label Parameter Listed

Field Notes: Sample length 300'. Recovery may have been poor due to turbidity of water. Many fish with sores and in poor condition.

Name of Collector(s): Wayne Schacher, Rick D. Bivens, and Chester J. Ellison

WR-0525

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Holston River	Lat-Long 362351N - 831154W
Body of Water Poor Valley Creek	Date 25 August 1987
County or River Mile Hawkins	Reach 06010104-17,1
	Pool Elevation 1085'
Gear Type Two backpack shockers sid	fime 1100-1145
by side @ 110 v. AC.	···-

SPECIES Name	CODE	NUMBER	LENGTH	WT.	*	*	*
Dorosoma cepedianum	48	2	7	0,25			
Hypentelium nigricans	166	1	8	0.2			
Moxostoma duquesnei	229	18	6-14	3.6			
Moxostoma erythrurum	230	8	6-10	1.5			
Cyprinus carpio	47	11	18	2.55			
Notropis chrysocephal	us 249	4	1-2	t		····	
Pimephales notatus	334	10	1-2	t			
Percina caprodes	306	2	3-4	t			
Percina sciera	317	1.	2	t			
Etheostoma simoterum	111	1	2	t			
Labidesthes sicculus	189	3	2-3	t			
					,		
		 					
		 					
		<u> </u>			i i		

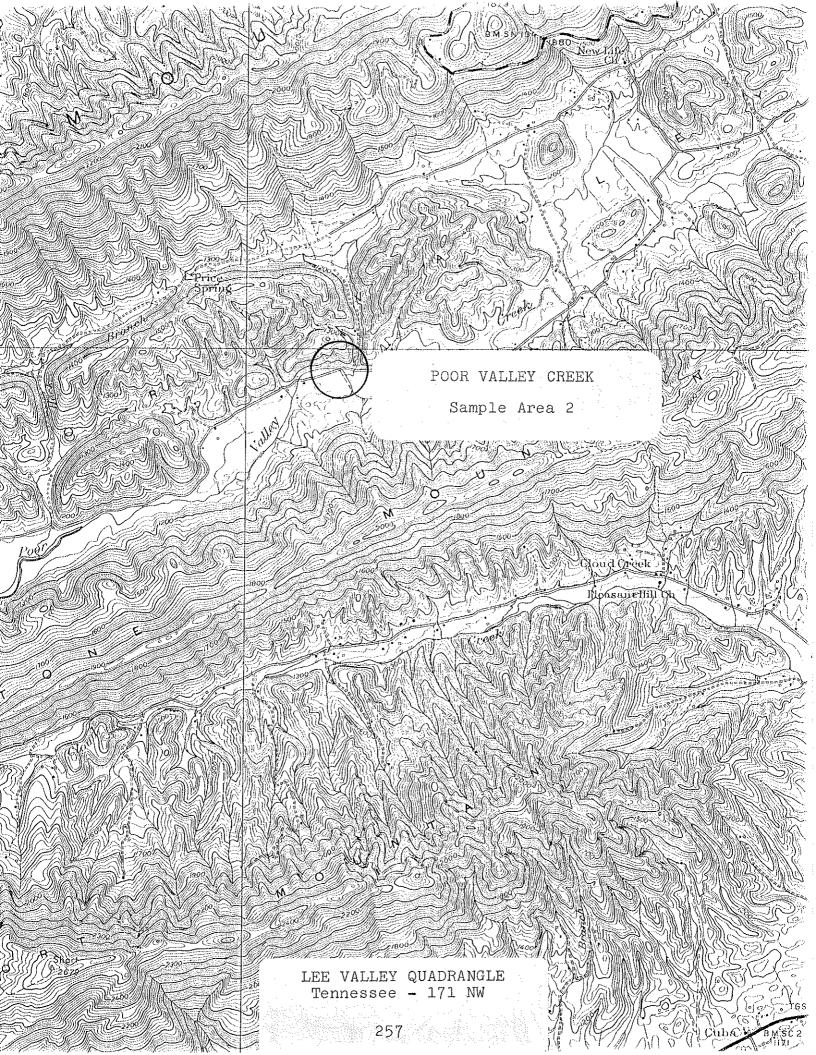
* Label Parameter Listed

Field Notes: Sample length 300'. Recovery may have been poor due to turbidity of water. Many fish with sores and in poor condition.

Name of Collector(s): Wayne Schacher, Rick D. Bivens, and Chester J. Ellison

WR-0525

Poor Valley Creek: Site # 1, Midstream Surber sample


25 August 1987

Field # 060

Hawkins Co., TN; Foot bridge at Spruce Pine Church. Coordinates: 362351N - 831154W. Lee Valley, Tenn., 171 NW Quad. Reach # 06010104-17,1.

TAXA	NUMBER
COLEOPTERA: Elmidae/Optioservus larva	1
DIPTERA: Chironomidae Simuliidae larvae adult	7 4 1
EPHEMEROPTERA: Baetidae/Baetis Pseudocloeon Heptageniidae/Stenonema Oligoneuriidae/Isonychia	5 2 1 14
MEGALOPTERA: Corydalidae/Corydalus cornutus	4
PELECYPODA: Corbicula fluminea	1
PLECOPTERA: Perlidae (early instar)	1
TRICHOPTERA: Hydropsychidae/Cheumatopsyche Hydropsyche H. betteni/depravata	1. 1 2
	45

Volumetric Displacement was 0.5 ml.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

Α.	LOC	TATION
	Wat	ershed Holston River Lat-Long 362456N - 830938W
	Str	eam Poor Valley Creek Length of Sample 300'
	Are	a or Station Site # 2 Reach 06010104-17,1
	Cou	nty Hawkins Date/Time 25 August 1987/1430
	Dat	a Collected By Wayne Schacher, Rick D. Bivens, and Chester J. Ellison
В.	PHY	SICAL CHARACTERISTICS
•	1,	Average Width 13.3' Average Depth 0.3' Maximum Depth 0.8'
	2.	Estimated Percent of Stream in Pools is
٠	3.	Estimated Percent Pool Bottom is Mud 30 % Silt 25 % Sand 25 %
		Clay 5 % Gravel 5 % Rubble 5 % Boulders 5 %
		Bedrock - % Other - %
	4.	Estimated Percent Riffle Bottom is Mud 5 % Silt 25 % Sand 25 %
		Bedrock 10 % Other Boulders 10% Rubble 25%
	5.	Abundance of Littoral Aquatic Plants is Numerous X
		Average Scarce
	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in
		of stream, Average in 40 %, Poor in 30 %.
	7.	Shade or Canopy Good over 40 % of Stream.
	8.	Flow (c.f.s.) 2.2 : Flow compared to Normal: Low X Normal High
*	9.	D.O. 9.4 ppm Temp. 74.4°F % Saturation]]].4
	10.	Present Weather Overcast and warm.
	11.	Past Weather (last 24 hours) Overcast and warm.
* *	12.	D.O. 9.4 pH 7.4 Temp. 74.4 Conductivity
	13.	Comments: Sample location just below bridge; 3 rd. bridge up on
		Poor Valley Road above Cherokee Res. * Taken with YSI meter.
		** pH is average of pocket pH meters readings. Siltation heavy,

slightly turbid, with silty-sandy bottom. Very low gradient.

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Holston River	Lat-Long 362456N - 830938W
Body of Water Poor Valley Creek	Date 25 August 1987
County or River Mile Hawkins	Reach 06010104-17,1
Type of Sampling Electrofishing	Pool Elevation 1135'
Gear Type Two backpack shockers side	Prime 1515-1600
by side @ 110 v. AC.	

SPECIES Name	CODE	NUMBER	LENGTH	wr.	*	*	*
Micropterus punctulat	ıs 219	1	10	0.45	:		
n n	tī	1	9	0.45			
11 11	Ţ!	5	3	0.1			
Micropterus salmoides	220	8	3	0.1			
11 11	11	1	4	t			
Lepomis auritus	201	32	2	0.3			
17 11	11	61	3	1.05			
n n	11	21	4	0.75			
11 11	11	8	5	0.55			
n n	. 11	1	6	0.28			
n n	11	2	7	0.4			
Lepomis macrochirus	206	3	2	t			
Ictalurus natalis	1,74	2	2-6	0.75			
Dorosoma cepedianum	48	3	7-8	0.45	i		
Hypentelium nigricans	166	37	3-10	3.0	······································		
Moxostoma duquesnei	229	3	7-11	0.75			
Campostoma anomalum	25	142	2-5	2.3			
Nocomis micropogon	234	1	6	0.1			
Votropis coccogenis	248	7	1-3	0.05			
Votropis chrysocephali	18 249	61	2-5	0.8			
Votropis galacturus	253	31	2-4	0.15		· · · · · · · · · · · · · · · · · · ·	
Pimephales notatus	334	57	1-3	0.2			
Etheostoma blennioide	81	10	2-5	0.15			
theostoma rufilineat	um 108	7	2-3	0.05	***************************************		
Continued	on	next	page		************************************		

* Label Parameter Listed

Field Notes: Sample length 300'.

Name of Collector(s): Wayne Schacher, Rick D. Bivens, and Chester J. Ellison WR-C525

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Holston River	Lat-Long 362456N - 830938W
Body of Water Poor Valley Creek	Date 25 August 1987
County or River Mile Hawkins	Reach 06010104-17,1
Type of Sampling Electrofishing	Pool Elevation 1135
Gear Type Two backpack shockers side	Time 1515-1600
by side @ 110 v. AC.	

SPECIES Name	CODE	NUMBER	LENGTH	WT.	*	*	*
Itheostoma simoterum	111	30	2	0.09			
Percina caprodes	47	4	4-5	0.1			
Percina sciera	317	2	2	t			
Labidesthes sicculus	189	3	2-3	t			
Cottus carolinae	40	1	Ц	t			
							·
					· 		
74							
		-					
······································							
							<u> </u>
						1	
							-
							
		1		 			

* Label Paramet	er Liste	.d	l					J		
Field Notes:	Sample	lengtl	n 300'.							
							:			
Name of Collect	or(s):	Wayne	Schacher,	Rick	D.	Bivens,	and	Chester	J.	Ellison
WR-0525										

Poor Valley Creek: Site # 2, Edge Surber sample

25 August 1987

Field # 061

Hawkins Co., TN; Third bridge on Poor Valley Rd. upstream of Cherokee Reservoir. Coordinates: 362456N - 830938W. Lee Valley, Tenn., # 171 NW Quad. Reach # 06010104-17,1.

TAXA	NUMBER
COLEOPTERA: Elmidae/Optioservus larvae Stenelmis larva	3
DIPTERA: Tipulidae/Limnophila	2
EPHEMEROPTERA: Baetidae/Baetis Ephemeridae/Ephemera Heptageniidae/Heptagenia Stenonema Oligoneuriidae/Isonychia	5 1 6 2 1
GASTROPODA: Pleuroceridae/Pleurocera unciale	3
MEGALOPTERA: Corydalidae/Corydalus cornutus Nigronia serricornis	1 1
ODONATA: Gomphidae (early instars)	3
PELECYPODA: Corbiculidae/Corbicula fluminea	2
PLECOPTERA: Perlidae/Acroneuria	1
TRICHOPTERA: Hydropsychidae/Cheumatopsyche Hydropsyche betteni/depravata	1
	34

Volumetric Displacement was 0.4 ml.

Poor Valley Creek: Site # 2, Midstream Surber sample

25 August 1987

Field # 061

Hawkins Co., TN; Third bridge on Poor Valley Rd. upstream of Cherokee Reservoir. Coordinates: 362456N - 830938W. Lee Valley, Tenn., # 171 NW Quad. Reach # 06010104-17,1.

TAXA	NUMBER
COLEOPTERA: Elmidae/Stenelmis larvae Psephenidae/Psephenus herricki	3 8
DIPTERA: Chironomidae Tipulidae/ <u>Limnophila</u>	5 3
EPHEMEROPTERA: Baetidae/Baetis Heptageniidae/Stenonema	4 2
GASTROPODA: Pleuroceridae/Pleurocera unciale	б
ODONATA: Coenagrionidae/Argia (early instar) Gomphidae/Stylogomphus albistylus	1
PELECYPODA: Corbiculidae/Corbicula fluminea	4
TRICHOPTERA: Limnephilidae/Goera	2
	39

Volumetric Displacement was 0.35 ml.

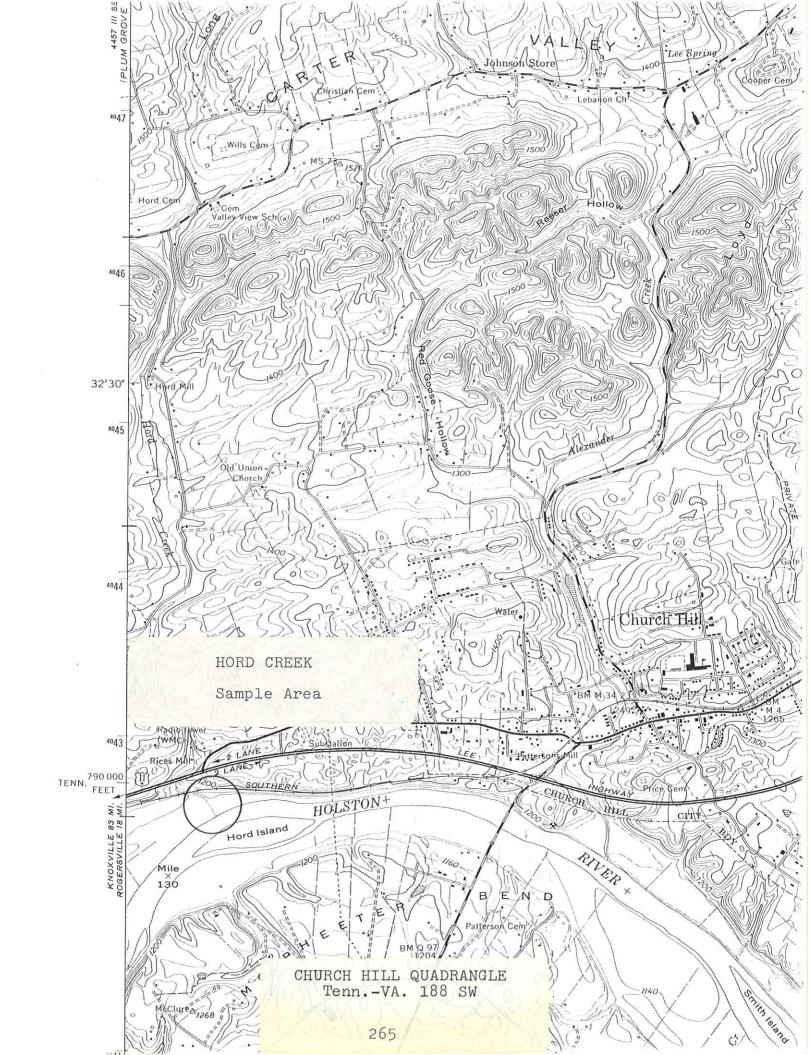
Hord Creek

One qualitative fishery survey was conducted in August 1987:

- Location and Length Tributary to the Holston River. The sample area was located approximately 100 yards upstream of the mouth and was sampled on 4 August 1987. It was 300 ft. in length and averaged 14.2 ft. in width. The site was in Hawkins County. Church Hill Quadrangle.
- Gear Type The site was sampled using backpack electrofishing equipment. Two shockers were operated side by side at 110 v. AC.
- Water Quality Data were taken from midstream with a Model 58 YSI meter and a Hach Pocket pH meter. On 4 August 1987: DO 8.7 ppm, pH 8.4, Temperature 72.1 F.
- Benthos Collection Benthic organisms were collected from two square-foot Surber samples at the site. The samples averaged 38 organisms, 0.4 ml. volumetric displacement, and represented 19 different taxa.

Fish Collected:

Species	No.	% by No.	Wt.	% by Wt.
Rock bass	61	25.6	11.85	84.0
Redbreast sunfish	1	0.4	0.05	
Nongame Fish	8	3.4	0.1	0.7
Forage Fish	168	70.6	2.1	15.0
Total	238		14.1	


Comments - Hord Creek was surveyed primarily to establish fishery diversity present prior to any construction of a water treatment plant planned on the upper reach of the stream.

Rock bass (Ambloplites rupestris) along with one redbreast sunfish (Lepomis auritus) were the only game fish present in our sampling. A large number of rock bass (61), relative to stream size and sample length, were collected from this site. This was most probably an artifact of sample area proximity to the Holston River rather than an indication of any above normal stream abundance. They most likely move into the lower stream

from the river and it became apparent during sampling that fewer rock bass were being collected in the upper part of the sample area.

A total of 16 fish species was collected all of which are typical components of Ridge and Valley streams that exhibit medium to fairly heavy non-point-soure siltation. However, the presence of the Tennessee shiner (Notropis leuciodus) and the telescope shiner (N. telescopus) indicates fairly good water quality.

Benthic macroinvertebrates from our samples included representatives of Heptageniidae, Leptophlebiidae, and Oligoneuriidae mayflies, Hydropsychidae, Limnephilidae, Philopotamidae, and Rhyacophilidae caddisflies, and Elmidae and Psephenidae beetles. The river snail *Pleurocera unciale* was also present.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

LOCATION

	Wat	ershed Holston River Lat-Long 363103N - 824438W
	Str	eam Hord Creek Length of Sample 300!
	Are	a or Station Near the mouth. Reach 06010104-44.0
	Cou	nty Hawkins Date/Time 4 August 1987/1300
		a Collected By Wayne Schacher, Rick D. Bivens, and Chester J. Ellison
3.	PHY	SICAL CHARACTERISTICS
	1.	Average Width 14.2' Average Depth 0.4' Maximum Depth 1.2'
	2.	Estimated Percent of Stream in Pools is 30 %
	3.	Estimated Percent Pool Bottom is Mud 10 % Silt 30 % Sand 20 %
		Clay - % Gravel 10 % Rubble 20 % Boulders 10 %
		Bedrock - % Other - %
	4.	Estimated Percent Riffle Bottom is Mud 10 % Silt 20 % Sand 20 %
		Bedrock 5 % Other Rubble 30% Gravel 15%
	5.	Abundance of Littoral Aquatic Plants is Numerous
		AverageScarceX
	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in 40
		of stream, Average in 30 %, Poor in 30 %.
	7.	Shade or Canopy Good over 95 % of Stream.
		Flow (c.f.s.) 1.5 : Flow compared to Normal: Low X Normal High
*	9.	D.O. 8.7 ppm Temp. 72.1°F % Saturation 99.1
	10.	Present Weather Partly cloudy and very hot.
	11.	Past Weather (last 24 hours) Partly cloudy and hot.
*	12.	D.O. 8.7 pH 8.4 Temp. 72.1 Conductivity
	13.	Comments: Sample location approximately 100 yards above the mouth.
		Siltation moderate to fairly heavy. * Taken with YST meter.
		** Taken with pocket pH meter.

FISH FIELD DATA FORM

TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Holston River	r		Lat-Long_	363103N	<u> - 8244</u>	38W	
Body of Water Hord Creel	ζ		Date4	August 1	987		
County or River Mile Hawl	<u>kins</u>		Reach 0	<u>6010104-</u>	44.0		
Type of Sampling Electro:	fishing		Pool Eleva	ation 11	.251		
Gear Type Two backpack by side @ 110	shocke) v. AC	rs side	Time 14	15-1445			
SPECIES Name	CODE	NUMBER	LENGTH	WT.	*	*	*
Ambloplites rupestris	13	2	9	0.8			
			T _				

SPECIES Name	CODE	NUMBER	LENGTH	WT.	*	*	*
Ambloplites rupestris	13	2	9	0.8			
n n	īŤ	9	8	2.7			
n n	11	12	7	3.0			
11 11	11	19	6	2,95		:	
11 11	11	7	5	1.8			
11 11	11	6	4	0.4			
11 11	11	6	3	0.2			
Lepomis auritus	201	1	4	0.05			
Hypentelium nigricans	166	6	2-4	t			
Ictalurus natalis	174	2	5	0.1			
Campostoma anomalum	25	61	2-6	1.0			
Nocomis micropogon	234	11	2-4	0.1			
Hybopsis amblops	155	4	3	t	····		
Notropis chrysocephal	us 249	10	3-4	0.1			***************************************
Notropis coccogenis	248	1.3	2-5	0.2			
Notropis leuciodus	255	7	3	t			
Notropis telescopus	272	10	3	t			,
Rhinichthys atratulus	351	Ł	1-2	t			
Etheostoma blennioide	s 81	6	3-5	0.1			
Etheostoma rufilineat	um 108	5	2-3	t			
Etheostoma simoterum	111	15	1-3	t			
Cottus carolinae	40	22	3-5	0.6			
			1				
			1	1			

^{*} Label Parameter Listed

Field Notes: 300' sample length. Several fish had sores on them. The large number of rock bass collected may be due to proximity to river.

Name of Collector(s): Wayne Schacher, Rick D. Bivens, and Chester J. Ellison WR-C525

Hord Creek: Edge Surber sample

4 August 1987

Field # 055

Hawkins Co., TN; About 100 yrds. upstream of the mouth. Coordinates: 363103N - 824438W. Church Hill, Tenn.-VA., # 188 SW Quad. Reach # 06010104-44,0.

TAXA	NUMBER
BRANCHIOBDELLIDA:	1
COLEOPTERA: Elmidae/Optioservus larvae Stenelmis larvae Psephenidae/Psephenus herricki	2 2 8
DIPTERA: Simuliidae Tipulidae/Limnophila	1
EPHEMEROPTERA: Heptageniidae/Stenacron Stenonema Leptophlebiidae/Paraleptophlebia	2 6 1
GASTROPODA: Pleuroceridae/Pleurocera unciale	3
ISOPODA: Asellidae/Lirceus	2
MEGALOPTERA: Corydalidae/Nigronia serricornis	1
OLIGOCHAETA:	2
	32

Volumetric Displacement was 0.25 ml.

Hord Creek: Midstream Surber sample

4 August 1987

Field # 055

Hawkins Co., TN; About 100 yrds. upstream of the mouth. Coordinates: 363103N - 824438W. Church Hill, Tenn.-VA., # 188 SW Quad. Reach # 06010104-44,0.

TAXA	NUMBER
COLEOPTERA: Elmidae/Optioservus larva Stenelmis larva Psephenidae/Psephenus herricki	1 1 9
DIPTERA: Chironomidae Tipulidae/Limnophila	1
EPHEMEROPTERA: Heptageniidae/Stenacron Stenonema Leptophlebiidae/Paraleptophlebia Oligoneuriidae/Isonychia	3 7 1 2
GASTROPODA: Pleuroceridae/Pleurocera unciale	7
ISOPODA: Asellidae/ <u>Lirceus</u>	4
MEGALOPTERA: Corydalidae/ <u>Nigronia</u> serricornis	2
TRICHOPTERA: Hydropsychidae/Cheumatopsyche Limnephilidae/Neophylax Philopotamidae/Chimarra Rhyacophilidae/Rhyacophila fuscula	1 1 1
	43

Volumetric Displacement was 0.5 ml.

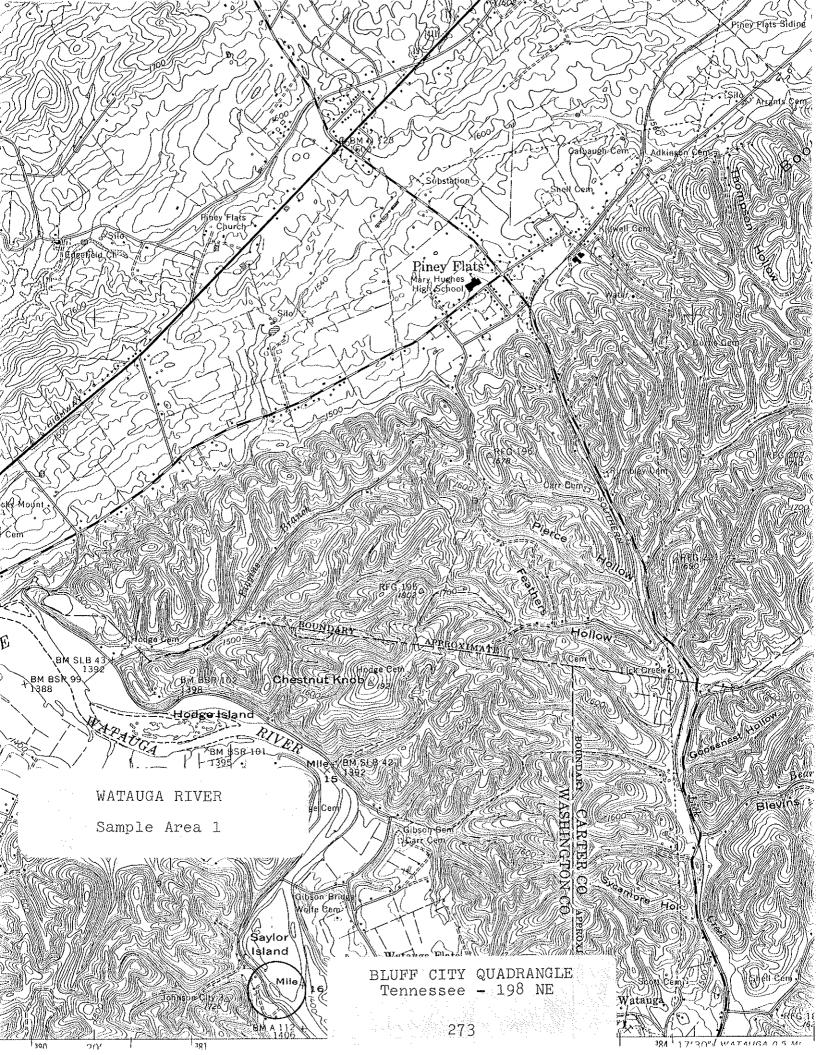
Watauga River

Two quantitative and one qualitative fishery surveys were conducted in April and September 1987:

- Location and Length Sample area 1 was on the righthand side of Saylor Island, near Watauga River mi. 16.0, and was sampled on 2 April 1987. The sample area was approximately 100 ft. in length and averaged about 60 ft. in width. Sample area 2 was at Watauga River mi. 21.4, and was sampled on 16 September 1987. The sample area was 200 ft. in length and averaged 133 ft. in width. Sample area 3 was just upstream from area 2 and was located at Watauga River mi. 21.7. It was on the right-hand side of a small island and was sampled on 16 September 1987. Site 1 was in Washington County. Bluff City Quadrangle. Sites 2 and 3 were in Carter County. Johnson City Quadrangle.
- Gear Type Sites 1 and 2 were sampled with explosives and site 3
 was sampled using backpack electrofishing equipment. Primacord
 with a blocknet anchored downstream to collect fish was used
 at site 1 and 2. Two shockers, operating side by side at 110
 v. AC, were used at site 3.
- Water Quality Data were taken from midstream with a Model 58 YSI meter, and a Cole Parmer pocket pH meter. Area 1, on 2 April 1987: DO 9.1 ppm, pH 7.9, Temperature 47.8 F. Area 2, on 16 September 1987: DO 10.3 ppm, pH 8.4, Temperature 58.8 F. No data were taken at area 3 as it was just upstream of area 2.
- Benthos Collection Benthic organisms were collected from two square-foot Surber samples at site 1. At area 2, four square-foot Surber samples were collected. And, at site 3, a qualitative sample was taken using a D-frame aquatic net. Area 1 averaged 96 organisms, 1.3 ml. volumetric displacement, and represented 13 different taxa. Area 2 averaged 42 organisms, 0.7 ml. volumetric displacement, and represented 21 different taxa. The qualitative sample from area 3 contained 379 organisms and represented 26 different taxa.
- <u>Fish Collected</u>: (See accompanying table)
- Comments The lower 9 mile stretch of the Watauga River, from Elizabethton to Boone Reservoir, has received industrial pollution from synthetic textile operations of American Bemberg and North American Rayon Corporation since the 1920s. Municipal sewage from Elizabethton and Johnson City have further added to the problem. Biological surveys from 1970

through 1982 by the Tennessee Department of Health and Environment documented the presence of only the most pollution tolerant forms of aquatic life in this segement of the stream (Mullican and Leming 1970; McKinney et al. 1987). Upstream of Elizabethton to Wilbur Dam the river is identified and managed as a highly productive trout fishery.

Reductions in effluent toxicity from the above mentioned industrial operations have resulted in recent recovery of the lower river portion for macroinvertebrates and fish. Reports from local fishermen and other sources that trout were being taken, prompted TWRA to conduct fishery surveys on the lower Watauga. We collected fish by electrofishing and detonation cord sampling and documented the presence of rainbow trout (Salmo gairdneri), brown trout (S. trutta), smallmouth bass (Micropterus dolomieui), and bluegill (Lepomis macrochirus). In all, a total of 14 fish species was collected from our sampling. Additional sampling is scheduled in 1988 to further evaluate the recovery of this portion of the river. Also, an experimental trout stocking program has recently been implemented.


Benthic macroinvertebrates from our samples further attest to the recovery of the lower Watauga. These included representatives of Baetidae, Ephemerellidae, and Heptageniidae mayflies, Branchycentridae, Hydropsychidae, and Rhyacophilidae caddisflies, elmid riffle beetles, and Perlidae and Pteronarcyidae stoneflies. Our qualitative sample represented at least 26 different taxa. A macroinvertebrate survey of this same area in 1976 consisted of only three distinct taxa (McKinney et al. 1987).

Fish collected in three samples of the Watauga River.

	% by Wt.	40.6	'n	12.6						
р еа 3	Wt.	0,0		0.4 0.5 0.5	7.15					
Area	% by No.	ω, ω,	•	85.2 85.2						
	No.	<u></u>	Υ	155	182					
	% by Wt.	61.2	44	19.4						
Area 2	W.t.	0.63	0.05	0.5	1.03			0.00	0.32	1.65
Ar	% by	3.7	33.7	18.5						
	No.	Н		エクク	27			000	800	† †
р П	% by		72.0	4.0						
Area	No.		6	НФ	25			131	7 7	182
Actual	Species	Rainbow trout	Smallmouth bass Bluegill	Nongame Fish Forage Fish	Total	Calculated Standing Crop/ac	Species	Rainbow trout Smallmouth bass Bluegill	Nongame Fish Forage Fish	Total

^aNo weight recorded.

bqualitative electrofishing sample.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

Α.	LOC	CATION
	Wat	ershed Watauga River Lat-Long 362247N - 821923W
	Str	ream Watauga River Length of Sample 100' (approx.)
	Are	a or Station Site # 1 Reach 06010103-7,1
	Cou	nty Washington Date/Time 2 April 1987/0945
	Dat	a Collected By Rick D. Bivens, Dick Wilson, and Wayne Schacher
В.	PHY	SICAL CHARACTERISTICS
*	1.	Average Width 60' Average Depth 1.5' Maximum Depth 3.5'
	2.	Estimated Percent of Stream in Pools is %
	3.	Estimated Percent Pool Bottom is Mud _ % Silt _ % Sand _ %
		Clay _ % Gravel _ % Rubble _ % Boulders _ %
		Bedrock % Other %
	4.	Estimated Percent Riffle Bottom is Mud _ % Silt _ % Sand _ %
		Bedrock _ % Other
	5.	Abundance of Littoral Aquatic Plants is Numerous
		AverageScarce
	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in
		of stream, Average in
	7.	Shade or Canopy Good over % of Stream.
	8.	Flow (c.f.s.) - : Flow compared to Normal: Low Normal High
	9.	D.O. 9.1 ppm Temp. 47.8°F % Saturation 80
1	0.	Present Weather Partly cloudy
1	1.	Past Weather (last 24 hours) same
1	2.	D.O. 9.1 pH 7.9 Temp. 47.8 Conductivity

* Estimates only.

13. Comments: Sample location at Saylor Island, righthand side (up-

stream), near Watauga River mi. 16.0, and below treatment plant.

FISH FIELD DATA FORM

TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Watauga Riv	Lat-Long 362247N - 821923W								
Body of Water Watauga	Date 2 April 1987 .								
County or River Mile Was	hington		Reach 06010103-7,1						
Type of Sampling Explos		Pool Elevation 1395'							
Gear Type Primacord Approx. 100	'sample	e lengtl	Time 0800-0930						
SPECIES Name	CODE	NUMBER	LENGTH						
Lepomis macrochirus	206	3	7						
11 11	1!	9	6						
11 11	†1	2	5						
11 11	11	1	3		ı				
11 11	11	3	2				-		
Dorosoma cepedianum	48	1	6						
Notropis spilopterus	269	2	3				·		
Notropis whipplei	278	1	3						
Pimephales notatus	334	1	3						
Pimephales vigilax	336	2	3		<u> </u>				
·									
					<u>'</u>				
ware that the transfer of the same and the s									
					!				
					'				
	l								

^{*} Label Parameter Listed

Field Notes: All the above fish were taken by Chris O'Bara for identification. No wt. recorded. Tennessee Tech. Univ. Fish Collection Field No. 87-0029.

Name of Collector(s): C. O'Bara, Greene, T. Cheek, D. Wilson, R. Bivens,

WR-0525

D. Peterson, W. Schacher, G. Moats, B. Smith, and C. Ellison

Watauga River: Site # 1, Edge Surber sample

2 April 1987

Field # 031

Washington Co., TN; Righthand side of Saylor Island, Watauga River mi. 16.0. Coordinates: 362247N - 821923W. Bluff City, Tenn., # 198 Quad. Reach # 06010103-7,1.

TAXA	NUMBER
DIPTERA:	
Chironomidae larvae pupa	5 1
Tipulidae/Antocha	2
TRICHOPTERA:	7
Unidentified pupa Hydropsychidae/Hydropsyche betteni/depravata	36
Symphitopsyche bronta	2
	47

Volumetric Displacement was 1.0 ml.

Watauga River: Site # 1, Midstream Surber sample


2 April 1987

Field # 031

Washington Co., TN; Righthand side of Saylor Island, Watauga River mi. 16.0. Coordinates: 362247N - 821923W. Bluff City, Tenn., # 198 Quad. Reach # 06010103-7,1.

TAXA	NUMBER
COLEOPTERA: Elmidae/Optioservus larva Promoresia tardella larva	1.
DIPTERA: Chironomidae Tipulidae/Antocha larvae pupa	46 10 1
GASTROPODA: Pleuroceridae/Goniobasis simplex	1
MEGALOPTERA: Corydalidae/Nigronia serricornis	1
OLIGOCHAETA:	2
TRICHOPTERA: Hydropsychidae/Cheumatopsyche Hydropsyche pupa (male) H. betteni/depravata Symphitopsyche sparna pupa (male)	9 1 70 1
	144

Volumetric Displacement was 1.5 ml.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

A	LO	CATION						
	Wat	tershed Watauga River Lat-Long 362008N - 821612W						
	Sti	ream Watauga River Length of Sample 200'						
	Are	ea or Station Site # 2 Reach 06010103-12,0						
	Cou	nty Carter Date/Time 16 September 1987/1300						
	Dat	a Collected By R. Bivens, C. Ellison, D. Peterson, and D. Lane						
В	. РНҮ	SICAL CHARACTERISTICS						
	1.	Average Width 133' Average Depth 7.3' Maximum Depth 3.7'						
	2.	Estimated Percent of Stream in Pools is 40 %						
	3.	Estimated Percent Pool Bottom is Mud - % Silt 10 % Sand 15 %						
		Clay - % Gravel 10 % Rubble 40 % Boulders 20 %						
		Bedrock 5 % Other - %						
	4.	Estimated Percent Riffle Bottom is Mud % Silt 5 % Sand 5 %						
		Bedrock 5 % Other Rubble 65% Gravel 10% Boulders 10%						
	5.	5. Abundance of Littoral Aquatic Plants is Numerous X						
		Average Scarce						
	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in 30 %						
		of stream, Average in 40 %, Poor in 30 %.						
	7.	Shade or Canopy Good over 5 % of Stream.						
*	8.	Flow (c.f.s.) 235.1 : Flow compared to Normal: Low X Normal High						
	9.	D.O. 10.3 ppm Temp. 58.8°F % Saturation 100						
	10.	Present Weather Partly cloudy and warm.						
	11.	Past Weather (last 24 hours) Hot and dry.						
* *	12.	D.O. <u>10.3</u> pH <u>8.4</u> Temp. <u>58.8</u> Conductivity						
	13.	Comments: Sample location at Watauga River mi. 21.4. * No						
		generation from Wilbur Dam. ** pH taken with Cole Parmer Pocket						
		pH meter.						

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Vatershed Watauga Riv			Lat-Long 362008N - 821612W Date 16 September 1987				
Body of Water Watauga I	River	I		***************************************			
			Reach 06010103-12,0				
Cype of Sampling Explos	sives		Pool Elevation 1435'				
Gear Type Primacord 200' sample	length		[ime <u>103</u>	0-1130			
SPECIES Name	CODE	NUMBER	LENGTE	WI.	*.	*	*
almo gairdneri	353	1 1	11	0.63			
icropterus dolomieui	218	1	4	0.05		<u></u>	
epomis macrochirus	206	1	4	0.05	<u> </u>		
ypentelium nigricans	166	5	4-7	0.2	<u> </u>		
ampostoma anomalum	25	1.4	2-3	0.1			
hinichthys atratulus	351	2	2	t t			
ottus carolinae	40	3	2	t			
							<u> </u>
				<u> </u>			
			-				<u> </u>
	· ·						_
					!		
·····					!		
	İ						
				į	· .		1
				į			
				l .			
			ĺ				
	1						
	 				:		1

Field Notes:

Name of Collector(s): Price Wilkins, Doug Peterson, Wayne Schacher, Rick Bivens,
WP-C525 David Lane, Chester Ellison, Ron Jenkins, and Jeff Horton

Watauga River: Site # 2, Edge Surber sample # 1

16 September 1987

Field # 070

Carter Co., TN; Downstream of Elizabethton at Watauga River mi. 21.4. Coordinates: 362008N - 821612W. Johnson City, Tenn., # 198 SE Quad. Reach # 06010103-12,0.

TAXA	NUMBER
AMPHIPODA: Gammaridae	1
COLEOPTERA: Elmidae/Optioservus larvae Psephenidae/Psephenus herricki larva	2 1
DIPTERA: Chironomidae larvae pupae Tipulidae/Antocha larvae pupae	52 10 14 9
GASTROPODA: Physidae/Physa	2
HIRUDINEA: Glossiphoniidae/Glossiphonia *	2
ISOPODA: Asellidae/Asellus	11
MEGALOPTERA: Corydalidae/Nigronia serricornis	3
OLIGOCHAETA:	7
TRICHOPTERA: Hydropsychidae/Symphitopsyche morosa	1
TURBELLARIA:	2
	117

Volumetric Displacement was 1.1 ml.

^{*} Identification of Glossiphonia may be questionable.

Watauga River: Site # 2, Edge Surber sample # 2

16 September 1987

Field # 070

Carter Co., TN; Downstream of Elizabethton at Watauga River mi. 21.4. Coordinates: 362008N - 821612W. Johnson City, Tenn., # 198 SE Quad. Reach # 06010103-12,0.

TAXA	NUMBER
DIPTERA: Chironomidae larva pupae	1 2
Empididae Tipulidae/ <u>Antocha</u> larva pupa	1 1 1
EPHEMEROPTERA: Heptageniidae/Heptagenia <u>Stenonema</u>	1
TRICHOPTERA: Hydropsychidae/Symphitopsyche bronta S. sparna Rhyacophilidae/Rhyacophila vuphipes pupa	1 1 1
	11

Volumetric Displacement was 0.25 ml.

Watauga River: Site # 2, Midstream Surber sample # 1
16 September 1987 Field # 070

Carter Co., TN; Downstream of Elizabethton at Watauga River mi. 21.4. Coordinates: 362008N - 821612W. Johnson City, Tenn., # 198 SE Quad. Reach # 06010103-12,0.

TAXA	NUMBER
DIPTERA:	
Chironomidae larvae	3 1
pupa Tipulidae/ <u>Antocha</u> larvae pupae	7 4
EPHEMEROPTERA: Ephemerellidae/Serratella	1
ISOPODA: Asellidae/Asellus	2
TURBELLARIA:	1
TRICHOPTERA:	7
Brachycentridae/ <u>Micrasema</u> Hydropsychidae/Hydropsyche betteni/depravata	1
Symphitopsyche bronta	1
Rhyacophilidae/Rhyacophila vuphipes pupa	1
	23

Volumetric Displacement was 0.75 ml.

Watauga River: Site # 2, Midstream Surber sample # 2
16 September 1987 Field # 070

Carter Co., TN; Downstream of Elizabethton at Watauga River mi. 21.4. Coordinates: 362008N - 821612W. Johnson City, Tenn., # 198 SE Quad. Reach # 06010103-12,0.

AXAT	NUMBER
DIPTERA: Chironomidae larvae pupae Tipulidae/Antocha larvae pupae	3 2 8 2
TRICHOPTERA: Rhyacophilidae/Rhyacophila fuscula Rhyacophilidae/Rhyacophila pupae	1 2
	18

Volumetric Displacement was 0.85 ml.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

CZ +	LOC	SALION
	Wat	tershed Watauga River Lat-Long 361954N - 821619W
	Str	ream Watauga River Length of Sample 300' (approx.)
	Are	ea or Station Site # 3 Reach 06010103-12.0
	Cou	nty Carter Date/Time 16 September 1987/1430-1530
		a Collected By Rick D. Bivens
3.	PHY	SICAL CHARACTERISTICS
*	1.	Average Width 70' Average Depth 1.5' Maximum Depth 4.0'
		Estimated Percent of Stream in Pools is %
		Estimated Percent Pool Bottom is Mud _ % Silt _ % Sand _ %
		Clay % Gravel % Rubble % Boulders %
		Bedrock - % Other - %
	4.	Estimated Percent Riffle Bottom is Mud _ % Silt _ % Sand
		Bedrock - % Other -
	5.	Abundance of Littoral Aquatic Plants is Numerous
		Average Scarce
	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in
		of stream, Average in
	7.	Shade or Canopy Good over % of Stream.
		Flow (c.f.s.) - : Flow compared to Normal: Low Normal High
1	.0.	D.O Temp % Saturation Present Weather Partly cloudy and warm.
	LI.	
		Past Weather (last 24 hours) Hot and dry.
	.2.	D.O pH - Temp Conductivity - 21 7 righthand
1	.3.	Comments: Sample location at Watauga River mi. 21.7, righthand
		side of small island. Qualitative benthos sample collected,
		NO DANTESE GAES MECCHOCH. " DAVENDOUGO VULY:

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Watauga River	Lat-Long 361954N - 821619W
Body of Water Watauga River	Date 16 September 1987
County or River Mile <u>Carter</u>	Reach 06010103-12,0
Type of Sampling Electrofishing	Pool Elevation 1437'
Gear Type Two backpack shockers side by side @ 110 v. AC	eTime 1430-1530

SPECIES Name	CODE	NUMBER	LENGTH	wr.	*	*	*
Salmo gairdneri	353	•].	13	0.9			***************************************
11 11	11	1	11	0.7			
11 11	11	1	8	0.5			
<i>ii</i>	11	2	7	0.4			
11 11	11	2	6	0.4			
Salmo trutta	355	1	15	1.6			
11 11	11	1	6	0.1			
11 11	11	1	5	0.1			
Catostomus commersoni	32	11	2-7	0.8			
Hypentelium nigricans	166	6	2-5	0.1			
Campostoma anomalum	25	47	1-5	0.7			
Rhinichthys atratulus	351	22	1-3	0.15			
Semotilus atromaculat	ıs 360	1	3	t			
Cottus carolinae	40	85	2-3	0.7		Y.,, Y.	
					· · · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·					İ
							
					,	<u> </u>	

* Label Parameter Listed Approx. 300' sample length.

Field Notes: The brown trout appeared to be stream reproduction. One large trout escaped capture. Sample was right-hand side of an island.

Name of Collector(s): Price Wilkins, Wayne Schaher, Rick Bivens,

WR-C525 Chester Ellison, and Ron Jenkins

Watauga River: Site # 3, Qualitative sample

16 September 1987

Field # 071

Carter Co., TN; Downstream of mouth of Buffalo Creek at Watauga River mi. 21.7. Coordinates: 361954N - 821619W. Johnson City, Tenn., # 198 SE Quad. Reach # 06010103-12,0.

TAXA	NUMBER
AMPHIPODA: Gammaridae	3
COLEOPTERA: Elmidae/Optioservus larvae Promoresia tardella larvae Stenelmis adult	16 4 1
DECAPODA:	1
DIPTERA: Unidentified adults Chironomidae larvae pupae Empididae Simuliidae Tipulidae/Antocha larvae pupae	25 114 70 3 9 19
EPHEMEROPTERA: Baetidae/Baetis Ephemerellidae/Serratella Heptageniidae/Stenonema	20 5 6
GASTROPODA: Physidae/Physa	8
ISOPODA: Asellidae/Asellus	24
MEGALOPTERA: Corydalidae/Nigronia serricornis	13
OLIGOCHAETA:	1

cont.

Watauga River: Site # 3, Qualitative sample cont.

TAXA	NUMBER
PLECOPTERA: Perlidae/Acroneuria abnormis Pteronarcyidae/Allonarcys	3 1
TRICHOPTERA: Brachycentridae/Micrasema Hydropsychidae/Symphitopsyche bronta S. morosa S. sparna Rhyacophilidae/Rhyacophila fuscula R. vuphipes larvae pupae	2 8 3 10 1 3 3
TURBELLARIA:	1
	379

Buffalo Creek

One quantitative fishery survey was conducted in April 1987:

Location and Length - Tributary to the Watauga River. The sample area was located just downstream of the bridge on Warrior Lane, downstream from Milligan College, and was sampled on 2 April 1987. It was 100 ft. in length and averaged approximately 12 ft. in width. The site was in Carter County. Johnson City Quadrangle.

Gear Type - The site was sampled using explosives. Primacord with a blocknet anchored downstream to collect fish was used.

Water Quality - Data were taken midstream with a 4041 Hydrolab.

On 2 April 1987: DO - 11.5 ppm, pH - 7.6, Temperature - 52.3

F, Conductivity - 265 micromhos/cm.

Benthos Collection - Benthic organisms were collected from two square-foot Surber samples at the site. The samples averaged 96 organisms, 1.8 ml. volumetric displacement, and represented 22 different taxa.

Fish Collected:

Actual

Species	No.	% by	Wt.	% by Wt.
Rainbow trout	4	2.4	0.55	7.4
Nongame Fish Forage Fish	80 84	47.6 50.0	5.9 1.0	79.2 13.4
Total	168		7.45	
Calculated Standing Crop/ac				
Species				
Rainbow trout	145		19.97	
Nongame Fish Forage Fish	2904 3049		214.17 36.3	
Total	6098		270.44	


Comments:

This stream was checked after sampling the Watauga River, as we were in the area and had time to conduct an additional survey. The sampling was done primarily to gain more experience with primacord as a sampling technique as well as to develop a fish species diversity list and collect stream information for TADS.

Rainbow trout (Salmo gairdneri) were the only game fish present. This stream receives occasional stocking of trout fingerlings by TWRA and also from private applications. Trout from the Watauga River may also use the stream for spawning and to some extent the stream apparently supports its own trout population.

A total of 10 fish species in all was collected from this site. White suckers (Catostomus commersoni) and central stone-rollers (Campostoma anomalum) comprised about 63% of all fish collected.

Benthic macroinvertebrates from our samples included representatives of Baetidae, Ephemerellidae, Ephemera, Heptageniidae, and Oligoneuriidae mayflies, Hydropsychidae, Limnephilidae, and Psychomyiidae caddisflies, and Dryopidae, Elmidae and Psephenidae beetles. Midge larvae (Chironomidae) were abundant.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

	A. L	OCATION
	W	atershead Watauga River Lat-Long 361844N - 821712W
		tream Buffalo Creek Length of Sample 100'
		rea or Station Warrior Ln. Bridge Reach 06010103-45,0
	Co	Date/Time 2 April 1987/1420
		ta Collected By Rick D. Bivens and Chester J. Ellison
		YSICAL CHARACTERISTICS
*	1.	Average Width 12' Average Depth 1.5' Maximum Depth 3.5'
	2.	
	3.	Estimated Percent Pool Bottom is Mud 20 % Silt 40 % Sand 10 %
		Clay 5 % Gravel 5 % Rubble 10 % Boulders 10 %
		Bedrock - % Other - %
	4.	Estimated Percent Riffle Bottom is Mud 10 % Silt 50 % Sand 20 %
		Bedrock - % Other Rubble 20%
	5.	Abundance of Littoral Aquatic Plants is Numerous
		AverageScarceX
	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in 50 %
		of Stream, Average in 25 %, Poor in 25 %
	7.	Shade or Canopy Good over 20 % of Stream; Interferes little
		(degree) with any (type) of fishing.
*	8.	Flow (c.f.s.) - : Flow compared to Normal: Low Normal High_
* *	9.	D.O. 11.5 ppm Temp. 52.3°F % Saturation 105
	10.	Present Weather Cold, windy, and overcast.
	11.	Past Weather (last 24 hours) Clear to partly cloudy and cool.
* *	12.	D.O. <u>11.5</u> pH <u>7.6</u> Temp.52.3 Conductivity <u>265</u>
	13:	Comments: Sample location just below bridge on Warrior Lane,
-		downstream from Milligan College. *Widths and depths are est.
		only. **Hydrolab readings are questionable.

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Watauga Ri	Lat-Long 361844N - 821712W						
Body of Water Buffal	Date 2 April 1987						
County or River Mile C	arter		Reach 06	010103-4	5,0		
Type of Sampling Explo	Pool Eleva	tion 15	10'				
Gear Type Primacord			Time 1200	0-1300			
100' sampl	e lengt	h					
SPECIES Name	CODE	NUMBER	LENGTE	WI.	*	*	*
Salmo gairdneri	353	4	7	0.55			
Catostomus commersoni	32	57	2-10	3.4			
Hypentelium nigricans	166	21	2-11	2.0			
Moxostoma duquesnei	229	1	8	0.2			
Campostoma anomalum	25	46	2-5	0.7			
Carassius auratus	26	1	7	0.3	***************************************		
Notropis chrysocephal	us 249	5	4	0.05			
Rhinichthys atratulus	351	27	1-4	0.15			
Semotilus atromaculat	us 360	5	2-5	0.1			
Etheostoma simoterum	111	4	2	t			
					•		
					i		
					İ		
						V	
					· i	***************************************	
			j			***************************************	
			İ			····	i
					<u> </u>		
			i		i		

							:
	Ī						!
							:
Label Parameter Listed	1						
ield Notes:							
ame o' Collector(s): W.	Schools	ara D	Peterson	R Rive	ns R	Smith	

291

G. Moats, C. Ellison

WR-0525

Buffalo Creek: Edge Surber sample

2 April 1987

Field # 032

Carter Co., TN; Downstream of bridge on Warrior Lane. Coordinates: 361844N - 821712W. Johnson City, Tenn., # 198 SE Quad. Reach # 06010103-45,0.

TAXA	NUMBER
COLEOPTERA: Elmidae/Optioservus larvae	2
DIPTERA: Chironomidae larvae pupa	14 1
EPHEMEROPTERA: Unidentified adult Baetidae/Baetis Ephemerellidae/Ephemerella Ephemeridae/Ephemera Heptageniidae/Heptagenia Stenacron Stenonema Oligoneuriidae/Isonychia	1 3 3 1 6 9 1
GASTROPODA: Pleuroceridae/Pleurocera canaliculatum	1
ISOPODA: Asellidae/Asellus Lirceus	1 43
TRICHOPTERA: Unidentified adult Hydropsychidae/Unidentified pupa Cheumatopsyche Hydropsyche betteni/depravata Symphitopsyche bronta Psychomyiidae/Psychomyia flavida	1 7 1 1 4
	102

Volumetric Displacement was 1.5 ml.

Buffalo Creek: Midstream Surber sample

2 April 1987

Field # 032

Carter Co., TN; Downstream of bridge on Warrior Lane. Coordinates: 361844N - 821712W. Johnson City, Tenn., # 198 SE Quad. Reach # 06010103-45,0.

TAXA	NUMBER
COLEOPTERA: Dryopidae/Helichus Elmidae (early instar) Psephenidae/Psephenus herricki	1 1 1
DIPTERA: Chironomidae larvae pupae Tipulidae/Antocha larvae pupae	17 4 8 5
EPHEMEROPTERA: Ephemerellidae/Ephemerella Ephemeridae/Ephemera Heptageniidae/Stenacron Stenonema Oligoneuriidae/Isonychia	9 1 10 19 1
TRICHOPTERA: Hydropsychidae/Unidentified pupa Cheumatopsyche larvae pupa Limnephilidae/Neophylax	1 6 1 5
	90

Volumetric Displacement was 2.0 ml.

Laurel Fork (Headwaters)

One qualitative fishery survey was conducted in September 1986:

Was located at the mouth of Little Laurel Fork and was sampled on 18 September 1986. It was 300 ft. in length and averaged 21 ft. in width. The site was in Carter County. White Rocks Mountain Quadrangle.

Gear Type - The site was sampled using backpack electrofishing equipment. Two shockers were operated side by side.

Water Quality - Data were taken from midstream with a 4041
Hydrolab. On 18 September 1986: DO - 9.9 ppm, pH - 7.1,
Temperature - 55.9 F, Conductivity - 50 micromhos/cm.

Benthos Collection - Benthic organisms were collected from two square-foot Surber samples at the site. The samples averaged 24 organisms, 0.6 ml. volumetric displacement, and represented 14 different taxa.

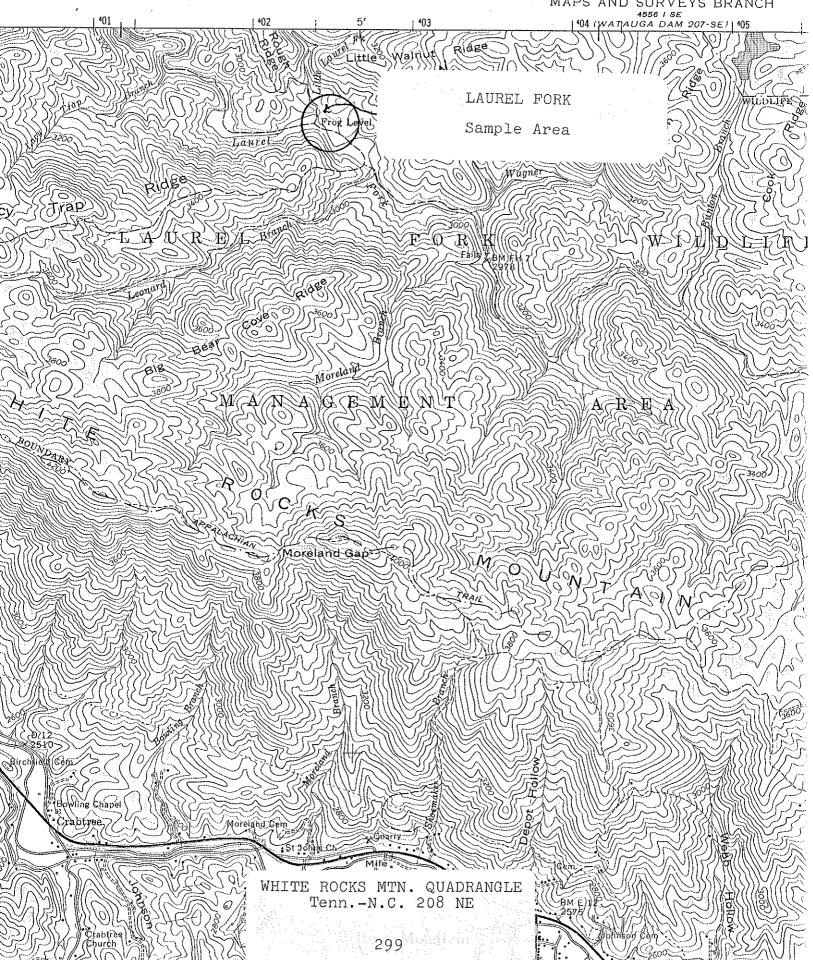
Fish Collected:

		% by		% by
Species	No.	No.	Wt.	Wt.
Rainbow trout Brown trout	1 29	0.8 23.9	0.5 3.7	5.9 44.0
Nongame Fish Forage Fish	9 82	7.4 67.8	3.2 1.0	38.1 11.9
Total	121		8.4	

Comments - This stream was surveyed primarily to assess its trout population. In our collections, trout were the only game fish present and the stream appears to have a healthy stream reproducing population of brown trout (Salmo trutta). This substantiates a recent decision to discontinue stocking of hatchery trout and reclassification to a wild trout stream.

Our collections represented 5 fish species, one of which was a single stocked rainbow trout (*S. gairdneri*). Our survey was similar to those of Laurel Fork made in 1979. At that time brown trout were found throughout the stream on the 8.2 mile segment of Forest Service land and all appeared to be natural stream reproduction. Rainbow trout were all

hatchery fish and no young of the year were collected (Bivens 1984). Prior to the 1970s Laurel Fork was known primarily as a rainbow trout stream. It appears that brown trout have now completely replaced the rainbow trout in Laurel Fork and its headwater tributaries.


It is interesting to note that no sculpin (Cottus sp.) were collected during our recent survey or during prior surveys (Whitworth and Strange 1979; Bivens 1984). Sculpin are generally a very common species component of almost all streams and rivers throughout east Tennessee and are widely distributed from warmwater streams to cold mountain streams. Predation by brown trout may be a factor involved in their apparent absence. However, they also appear to be absent from the headwater tributaries of Laurel Fork, many of which do not have brown trout (Bivens 1984).

Benthic macroinvertebrates from our samples included representatives of Baetidae and Heptageniidae mayflies, Limnephilidae, Odontoceridae, and Psychomyiidae caddisflies, Perlidae and Perlodidae stoneflies, and elmid riffle beetles. The periwinkle snail (Goniobasis simplex) was also present.

RIOR

UNITED STATES TENNESSEE VALLEY AUTHORITY

MAPS AND SURVEYS BRANCH

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

Α.	Ť	\cap	CI	١,	r	7	Λ	λ	ľ
Α.		U	ωż	١.	L	Ł	U	1	ı

	Wat	tershead Watauga River	Lat-Long 361443N - 820512W					
	Str	ceam Laurel Fork	Length of Sample 300'					
	Are	ea or Station Frog Level	Reach 06010103-17,0					
	Cou	inty Carter	Date/Time 18 September 1986/1000					
	Dat	a Collected By Rick D. Bivens, Che	ester J. Ellison, and Wayne Schache					
B. PHYSICAL CHARACTERISTICS								
	1.	Average Width 21' Average	Depth 0.7 Maximum Depth 2.8					
•	2.	Estimated Percent of Stream in Pool						
	3.	Estimated Percent Pool Bottom is Mu	d <u>5 % Silt 35 % Sand 35 %</u>					
		Clay - % Gravel 5 % Rub	ble 15 % Boulders 5 %					
		Bedrock - % Other - %						
	4.	Estimated Percent Riffle Bottom is 1	Mud <u> </u>					
		Bedrock 10 % Other Rubble	10%					
	5.	Abundance of Littoral Aquatic Plants	s is Numerous					
		Average	Scarce X					
	6.	Cover Abundance (overhanging banks,	logs, roots, etc.) is Good in 50 %					
		of Stream, Average in 25	%, Poor in%					
	7.	Shade or Canopy Good over 75	% of Stream; Interferes some					
		(degree) with(1	type) of fishing.					
	8.	Flow (c.f.s.) 12.9 : Flow compare	ed to Normal: LowX Normal High					
	9.	D.O. 9.9 ppm Temp	o. 55.9°F % Saturation 95					
.]	ιο.	Present Weather Overcast						
]	11.		ly cloudy to overcast.					
J	L2.	D.O. 9.9 pH 7.1 Temp.55.9 Condu	activity 50					
]	13:	Comments: Sample location at th	e mouth of Little Laurel Fork.					

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed Wata	uga River		Lat-Long	2617/1/12	и — 8элг	1 214		
Body of Water Lau		Lat-Long 361443N - 820512W Date 18 September 1986						
County or River Mi		Reach 06010103-17,0						
Type of Sampling	***************************************	,				···		
Gear Type 2 Bacl			Time 110	***************************************				
	sample length							
SPECI Name	CODE	NUMBER	LENGTH	WI.	*	*	* .	
Salmo gairdneri	353	1	10	0.5				
Salmo trutta	355	1	13	0.9				
11 11	11	1	11	0.5	1			
it tr	i ii	1	9	0.3				
11 II	17	8	7	1.0				
tt II	TT .	5	6	0.5				
11 11	TT.	3	5	0.3				
11 !!	Ħ	4	4	0.1				
11 11	11	6	3	0.1				
Catostomus comme	ersoni 32	9	2-12	3.2				
Rhinichthys atra	tulus 351	55	13	0.4				
Semotilus atroma	iculatus 360	27	1-7	0.6				
	ļ							
							ŀ	
							, I	
		ļ					:	
					1		-	
							!	
						L !		
	:	· · · · · · · · · · · · · · · · · · ·	1	1	1		,	

* Lat	el Param	eter List	ed									
Field	l Notes:_	The ra	inbow	trout	was	a	stocked	l f	ish.			<u></u>
	·····					·····						
Name	of Colle	ctor(s):	Rick	D. Bi	vens,	C	hester	J.	Ellison,	and	Wayne	Schacher

WR-0525

Laurel Fork: Edge Surber sample

18 September 1986

Field # 014

Carter Co., TN; Road crossing at the mouth of Little Laurel Fork. Coordinates: 361443N - 820512W. White Rocks Mtn., Tenn.-N.C., # 208 NE Quad. Reach # 06010103-17,0.

TAXA	NUMBER
DIPTERA: Chironomidae	3
EPHEMEROPTERA: Heptageniidae/Stenonema	2
GASTROPODA: Pleuroceridae/Goniobasis simplex	6
MEGALOPTERA: Corydalidae/Nigronia serricornis	1
ODONATA: Gomphidae (early instar)	1
TRICHOPTERA: Odontoceridae/Psilotreta Psychomyiidae/Psychomyia flavida	1
	15

Volumetric Displacement was 0.25 ml.

Laurel Fork: Midstream Surber sample

18 September 1986

Field # 014

Carter Co., TN; Road crossing at the mouth of Little Laurel Fork. Coordinates: 361443N - 820512W. White Rocks Mtn., Tenn.-N.C, # 208 NE Quad. Reach # 06010103-17,0.

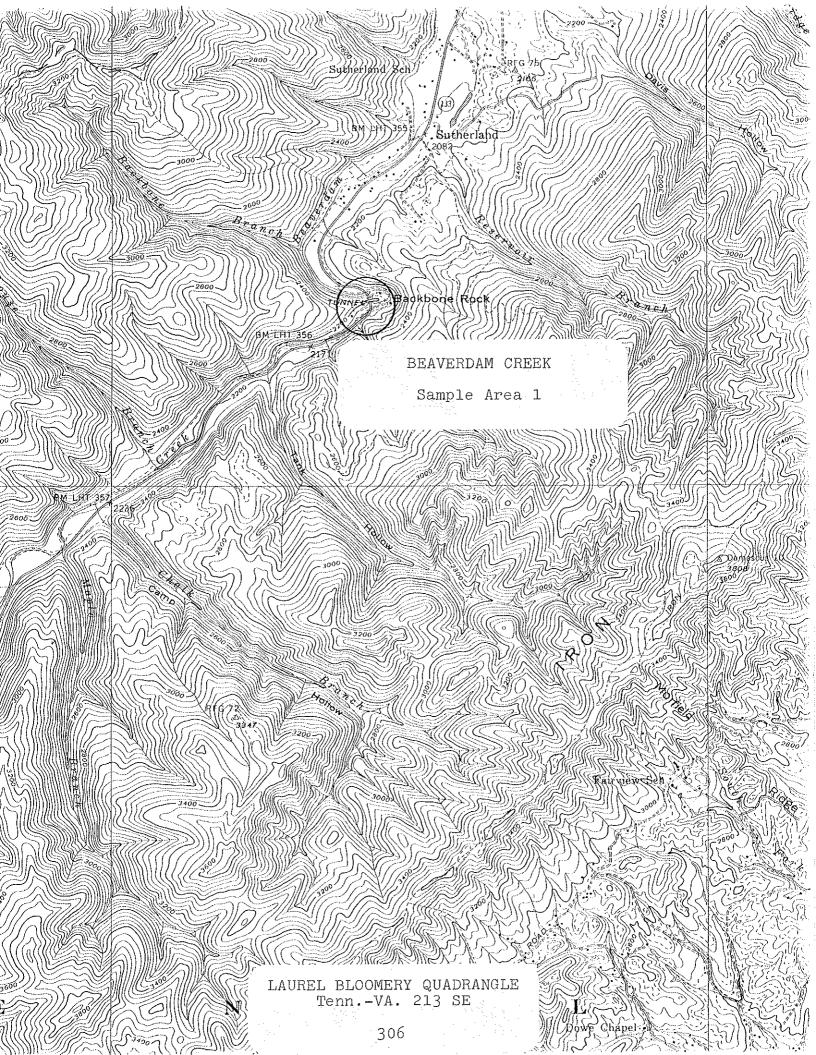
TAXA	NUMBER
COLEOPTERA: Elmidae/Optioservus larvae	10
DIPTERA: Tipulidae/ <u>Limnophila</u>	3
EPHEMEROPTERA: Baetidae/Pseudocloeon Heptageniidae/Heptagenia Stenonema	1 1 6
GASTROPODA: Pleuroceridae/Goniobasis simplex	4
MEGALOPTERA: Corydalidae/Nigronia serricornis	1
PLECOPTERA: Perlidae/Phasganophora capitata Perlodidae/Isogenoides (early instar)	1 1
TRICHOPTERA: Limnephilidae/Goera larva pupae Odontoceridae/Psilotreta	1 2 2
	33

Volumetric Displacement was 1.0 ml.

Beaverdam Creek

- Two qualitative fishery surveys were conducted in September 1986:
- Location and Length Tributary to the South Fork Holston River. Sample area 1 was at Backbone Rock and was sampled on 10 September 1986. The sample area was 300 ft. in length and averaged 30 ft. in width. Sample area 2 was just upstream from the mouth of Arnold Branch and was sampled on 17 September 1986. The sample area was 300 ft. in length and averaged 30.2 ft. in width. Both sites were in Johnson County. Laurel Bloomery Quadrangle.
- Gear Type Both sites were sampled using backpack electrofishing equipment. Area 1 was sampled using one shocker. Area 2 was sampled with two shockers operating side by side.
- Water Quality Data were taken from midstream with a 4041 Hydrolab. Area 1, on 10 September 1986: DO - 9.9 ppm, pH - 7.5, Temperature - 59.7 F, Conductivity - 83 micromhos/cm. Area 2, on 17 September 1986: DO - 9.9 ppm, pH - 7.6, Temperature - 60.1 F, Conductivity - 96 micromhos/cm.
- Benthos Collection Benthic organisms were collected from two square-foot Surber samples at each site. Area 1 averaged 20 organisms, 0.4 ml. volumetric displacement, and represented 11 different taxa. Area 2 averaged 34 organisms, 0.8 ml. volumetric displacement, and represented 10 different taxa.

Fish Collected.


rish collected.	Area 1			Area 2				
Species	No.	% by	Wt.	% by Wt.	No.	% by No.	Wt.	% by Wt.
Rainbow trout Brown trout			2.35 1.2		18 24	7.6 10.0	3.0 7.85	16.5 43.1
Nongame Fish Forage Fish	1 202		0.5 8.2		7 189	2.9 79.4	3·3 4.05	18.1 22.3
Total	238		12.25		238		18.2	

Comments - This stream was surveyed primarily to assess its trout population. In our collections, trout were the only game fish present and the stream appears to have a healthy stream reproducing population of both brown (Salmo trutta) and rainbow trout (S. gairdneri). This substantiates a recent

decision to discontinue stocking of hatchery trout and reclassification to a wild trout stream.

We collected a total of 16 fish species from both sites combined, similar to those reported by Etnier et al. (1983). Sculpin collected from Beaverdam Creek were identified as an "odd-ball" series. Dr. Robert Jenkins, Roanoke College, identified them as Cottus baileyi-like form showing trends towards the C. bairdi-like form with an apparent trend in upstream/downstream morphology.

Benthic macroinvertebrates from our samples included representatives of Baetidae, Heptageniidae, Leptophlebiidae, Ephemeridae, and Oligoneuriidae mayflies, Hydropsychidae and Limnephilidae caddisflies, and Perlidae stoneflies. Periwinkle snails (Goniobasis simplex) were also present.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

A. LOCATION

	Wat	ershead S. Fork Holston River Lat-Long 363536N - 814856W						
Stream Beaverdam Creek Length of Sample 300'								
	Area or Station Site # 1 Reach 06010102-23,0							
	Cou	nty Johnson Date/Time 10 September 1986/1145						
	Dat	a Collected By Rick D. Bivens and Chester J. Ellison						
3.	PHY	SICAL CHARACTERISTICS						
	1.	Average Width 30' Average Depth 1.7' Maximum Depth 3.75'						
	2.	Estimated Percent of Stream in Pools is%.						
	3.	Estimated Percent Pool Bottom is Mud 5 % Silt 15 % Sand 5 %						
		Clay 5 % Gravel 10 % Rubble 5 % Boulders 5 %						
		Bedrock 50 % Other %						
	4.	Estimated Percent Riffle Bottom is Mud 5 % Silt 5 % Sand 5 %						
		Bedrock 40 % Other Rubble 45%						
	5.	Abundance of Littoral Aquatic Plants is Numerous						
		Average Scarce X						
	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in30%						
		of Stream, Average in 35 %, Poor in 35 %						
	7.	Shade or Canopy Good over 50 % of Stream; Interferes little						
		(degree) with any (type) of fishing.						
	8.	Flow (c.f.s.) 40.8: Flow compared to Normal: Low Normal X High						
	9.	D.O. 9.9 ppm Temp. 59.7°F % Saturation 97						
1	.0.	Present Weather Clear & sunny						
1	1.	Past Weather (last 24 hours) Partly cloudy; no rain.						
1	.2.	D.O. <u>9.9</u> pH <u>7.5</u> Temp. <u>59.7</u> Conductivity <u>83</u>						
1	.3:	Comments: Sample location just above the upper bridge at Back-						
		bone Rock.						

FISH FIELD DATA FORM TENNESSEE WILD; IFE RESOURCES AGENCY

Watershed South Fork Holston River	Lat-Long 363536N - 814856W
Body of Water Beaverdam Creek	Date 10 September 1986
County or River Mile Johnson	Reach 06010102-23,0
Type of Sampling Electrofishing	Pool Elevation 2220'
Gear Type Backpack shocker	Time 1300-1500

300' sample length

SPECI Name	ES CODE	NUMBER	LENGTH	WI.	; *	*	*
Salmo gairdneri	353	1	11	0.5			
ti ii	11	3	10	0.9			
tt tt	11	1	8	0.15			
íi II	ļ m	4	7	0.4			
11 11	11	4	6	0.3			
11 11	l n	6	3	0.1			
11 11	11	2	2	t			1
Salmo trutta	355	2	9	0.5			
11 11	11	1	8	0.2			
tt tt	11	1	7	0.15			7
11 11	11	2	5	0.1			!
tt II	tt	3	14	0.15			l
11 11	11	4	3	0.1	1		
tt tt	τt	1	2	t			
Hypentelium nigr	icans 166	1	11	0.5			i
Campostoma anoma	lum 25	74	1-8	5.5			1
Nocomis micropogo	on 234	56	1-9	2.3			:
Notropis coccoge:	nis 248	16	2-3	0.1			
Notropis leuciod	us ! 255	1	3 !	t			
Votropis rubrier	oceus 262	25	1-3	0.1		•	:
Rhinichthys cata	ractak 352	1	6	0,05			ndon pro-
Semotilus atromad	culatus 360	1.	5	t i			
Etheostoma simote	erum 111	7	2-3	t !		!	
Cottus sp.	42	21	1-3	0.15		!	

* Label Parameter Listed

Field Notes: Many fish escaped capture. * Dr. Robert Jenkins identified the sculpin as Cottus baileyi-like showing trends toward C. bairdi-like form.

Name of Collector(s): Rick D. Bivens and Chester J. Ellison

WR-0525

Beaverdam Creek: Site # 1, Edge Surber sample

10 September 1986

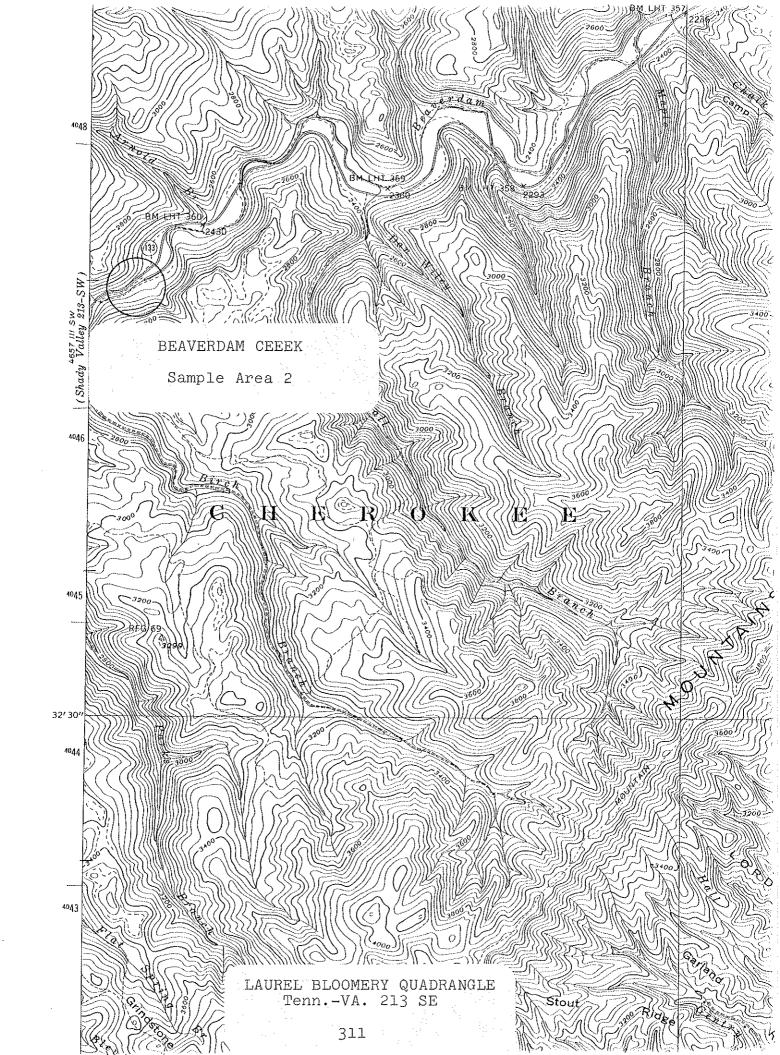
Field # 009

Johnson Co., TN; Upstream of upper bridge at Backbone Rock. Coordinates: 363536N - 814856W. Laurel Bloomery, Tenn.-VA., # 213 SE Quad. Reach # 06010102-23,0.

TAXA	NUMBER
COLEOPTERA: Psephenidae/Psephenus herricki	5
DIPTERA: Chironomidae	. 1
EPHEMEROPTERA: Heptageniidae/Stenonema Leptophlebiidae/Paraleptophlebia	1
MEGALOPTERA: Corydalidae/Corydalus cornutus	1
TRICHOPTERA: Hydropsychidae/Cheumatopsyche Limnephilidae/Goera	1
	11

Volumetric Displacement was 0.25 ml.

Beaverdam Creek: Site # 1, Midstream Surber sample


10 September 1986

Field # 009

Johnson Co., TN; Upstream of upper bridge at Backbone Rock. Coordinates: 363536N - 814856W. Laurel Bloomery, Tenn.-VA., # 213 SE Quad. Reach # 06010102-23,0.

TAXA	NUMBER
COLEOPTERA: Psephenidae/Psephenus herricki	ı
EPHEMEROPTERA: Baetidae/Baetis Heptageniidae/Stenonema	2 11
GASTROPODA: Pleuroceridae/Goniobasis simplex	4
PLECOPTERA: Perlidae/Paragnetina	2
TRICHOPTERA: Hydropsychidae/Symphitopsyche bronta	2
	22

Volumetric Displacement was 0.5 ml.

TENNESSEE WILDLIFE RESOURCES AGENCY PHYSIOCHEMICAL STREAM SURVEY FORM

	Wa	tershead S. Fork Holston River Lat-Long 363413N - 815210W
	St	ream Beaverdam Creek Length of Sample 300'
	Are	ea or Station
	Cot	unty Johnson Date/Time 17 September 1986/1230
	Dat	ta Collected By Rick D. Bivens, Chester J. Ellison, and Wayne Schache
В.	PHY	YSICAL CHARACTERISTICS
	1.	Average Width 30.2' Average Depth 0.9' Maximum Depth 3.1'
	2.	Estimated Percent of Stream in Pools is
	3.	Estimated Percent Pool Bottom is Mud 5 % Silt 10 % Sand 10 %
		Clay _ % Gravel 10 % Rubble 40 % Boulders 25 %
		Bedrock _ % Other _ %
	4.	Estimated Percent Riffle Bottom is Mud 5 % Silt 10 % Sand 10 %
		Bedrock - % Other Rubble 75%
	5.	Abundance of Littoral Aquatic Plants is Numerous
		Average Scarce X
ŧ	6.	Cover Abundance (overhanging banks, logs, roots, etc.) is Good in
		of Stream, Average in 25 %, Poor in 25 %
-	7.	Shade or Canopy Good over 80 % of Stream; Interferes some
		(degree) withfly (type) of fishing.
8	3.	Flow (c.f.s.) 30.4 : Flow compared to Normal: Low Normal X High
9	€.	D.O. 9.9 ppm Temp. 60.1 F % Saturation 98
1.0).	Present Weather Clear
1.1	•	Past Weather (last 24 hours) Partly cloudy
12	2.	D.O. 9.9 pH 7.6 Temp. 60.1Conductivity96
13):	Comments: Sample location upstream from the mouth of Arnold
		Branch.
		·

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed South Fork Holston River	Lat-Long 363413N - 815210W
Body of Water Beaverdam Creek	Date 17 September 1986
County or River Mile Johnson	Reach 06010102-23,0
Type of Sampling Electrofishing	Pool Elevation 2450'
Gear Type 2 Backpack Shockers	Time 1415-1615
300' sample length	

SPECIES Name	CODE	NUMBER	LENGTH	wr.	*	*	*
Salmo gairdneri	353	2	11	0.8			
11 11	11	3	9	0.9	E	İ	<u> </u>
11 11	īī	2	8	0.4		-	
it 11	tt	4	'7	0.4			
11 11	11	3	6	0,3			
11 11	11	3	5	0.2			
11 11	11	1	3	<u> </u> t			
Salmo trutta	355	1	21	3.25	<u> </u>		
tr ti	†1	2	13	2.1			
11 11	īī	4	9	1.0			
1! 11	11	4	8	0.9			
tt tt	ff 1	3	.7	0.4			
11 11	1!	3	4	0.1			
11 11	71	7	3	0.1	<u> </u>	1	
Catostomus commersoni	32	2	1113	1.8	1		
Hypentelium nigricans	166	5	6-11	1.5		<u> </u>	<u> </u>
Campostoma anomalum	25	26	1 1 - 8	1.9	1		<u> </u>
Nocomis micropogon	234	46	1-9	1,6			:
Notropis coccogenis	248	6	3-4	0.1	<u> </u>		:
Notropis rubricroceus	262	25	1- 3	0.1	!		
Rhinichthys atratulus		3	3- 3	t	!		
Rhicichthys cataracte		6	14	0.15	<u> </u>		
Continued on	next	page					

* Label Parameter List	ed							
Field Notes:				<u></u>		·		
	···-					·····	···	
Name of Collector(s):_	Rick D.	Bivens,	Chester	J.	Ellison,	and	Wayne	Schacher
WR+C525					i 1			

FISH FIELD DATA FORM TENNESSEE WILDLIFE RESOURCES AGENCY

Watershed South Fork Holston River	Lat-Long 363413N - 815210W
Body of Water Beaverdam Creek	Date 17 September 1986
County or River Mile Johnson	Reach 06010102-23,0
Type of Sampling Electrofishing	Pool Elevation 2450'
Gear Type 2 Backpack Shockers	Time 1415-1615
300' sample length	

SPECIES	CODE	NUMBER	LENGTH	WI.	*	*	*
							<u> </u>
	86	5	3-4	0.1			
flabellare	92	5	1-2	t	1		
simoterum	111	3	2-3	t			
swannanoa	129	2	3	t			1
	42	62	14	0.1			
							<u> </u>
							ļ !
	,						•
· · · · · · · · · · · · · · · · · · ·							
	· · · · · · · · · · · · · · · · · · ·						!
			 				
							,
		<u> </u>		<u>:</u>			
		<u> </u>		<u> </u>			
		<u> </u>		1		<u> </u>	
				1		• • • • • • • • • • • • • • • • • • •	
1				[
				!	:		
		<u> </u>	-		1	1	
	ranchium flabellare simoterum swannanoa	ranchium 86 flabellare 92 simoterum 111 swannanoa 129 42	code	CODE Note	CODE No. Code No. Code No. Code No. Code No. Code No. Code	CODE	CODE Name Code

* Label Parameter Listed

Field Notes: * Dr. Robert Jenkins identified the sculpin as Cottus baileyi-like showing trends toward C. bairdi-like form.

Name of Collector(s): Rick D. Bivens, Chester J. Ellison, and Wayne Schacher WR-C525

Beaverdam Creek: Site # 2, Edge Surber sample

17 September 1986

Field # 013

Johnson Co., TN; Upstream from the mouth of Arnold Branch. Coordinates: 363413N - 815210W. Laurel Bloomery, Tenn.-VA., # 213 SE Quad. Reach # 06010102-23,0.

TAXA	NUMBER
COLEOPTERA: Psephenidae/Psephenus herricki	6
DIPTERA: Chironomidae	1.
EPHEMEROPTERA: Baetidae/Baetis Ephemeridae/Ephemera Heptageniidae/Stenonema	2 3 7
GASTROPODA: Pleuroceridae/Goniobasis simplex	Ц
MEGALOPTERA: Corydalidae/Nigronia serricornis	1
TRICHOPTERA: Limnephilidae/Neophylax pupae	3
	27

Volumetric Displacement was 1.0 ml.

Beaverdam Creek: Site # 2, Midstream Surber sample


17 September 1986

Field # 013

Johnson Co., TN; Upstream from the mouth of Arnold Branch. Coordinates: 363413N - 815210W. Laurel Bloomery, Tenn.-VA., # 213 SE Quad. Reach # 06010102-23,0.

TAXA	NUMBER
COLEOPTERA: Oseogebudae/Psephenus herricki	10
DIPTERA: Unidentified pupa Chironomidae	1 3
EPHEMEROPTERA: Heptageniidae/Epeorus (<u>Iron</u>) <u>Heptagenia</u> <u>Stenonema</u> Oligoneuriidae/ <u>Isonychia</u>	1 16 3
GASTROPODA: Pleuroceridae/Goniobasis simplex	3
MEGALOPTERA: Corydalidae/Nigronia serricornis	1
TRICHOPTERA: Limnephilidae/Neophylax pupa	
	40

Volumetric Displacement was 0.5 ml.

REFERENCES

- Bivens, R. D. 1984. History and distribution of brook trout in the Appalachian region of Tennessee. Master's thesis. The University of Tennessee, Knoxville.
- Brigham, A. R., W. U. Brigham, and A. Gnilka, *eds*. 1982.

 Aquatic insects and oligochaetes of North and South
 Carolina. Midwest Aquatic Enterprises, Mahomet, Illinois.
- Bryant, R. T. 1979. The life history and comparative ecology of the sharphead darter, *Etheostoma acuticeps*. Master's thesis. The University of Tennessee, Knoxville.
- Etnier, D. A. 1973. Rare, endangered, and otherwise interesting fish species, Unaka division, Cherokee National Forest. Department of Zoology, The University of Tennessee, Knoxville.
- Etnier, D. A., and W. C. Starnes. 1980. The fishes of Tennessee. The University of Tennessee Press, in manuscript.
- Etnier, D. A., D. L. Bunting, W. O. Smith, and G. A. Vaughan. 1983. Tennessee baseline stream survey. Tennessee Water Resources Research Center, Research Report No. 95. The University of Tennessee, Knoxville.
- Hylton, R. 1984. The Clinch and Powell Rivers. Tennessee Department of Conservation. Ecological Services Division, Nashville.
- McKinney, A. D., D. L. Melgaard, and J. A. Wojtowicz. 1981.
 Biological assessment and inventory, Flat Creek and
 Nolichucky River as impacted by American Enka Corporation,
 Hamblen County. Tennessee Department of Public Health,
 Division of Water Quality Control, Knoxville.
- McKinney, A. D., D. L. Melgaard, J. A. Wojtowicz, and R. D. Martin. 1987. Restoration of the Watauga River in upper east Tennessee through reduction in textile mill effluent toxicity. Tennessee Department of Health and Environment, Division of Water Pollution Control, Knoxville.
- Mullican, H. N., R. M. Sinclair, and B. G. Isom. 1960.

 Nolichucky River stream pollution control, part I: survey of the aquatic biota of the Nolichucky River in the state of Tennessee. Tennessee Department of Public Health, Tennessee Stream Pollution Control Board, Nashville.

- Mullican, H. N., and E. C. Leming. 1970. Biological conditions of the Watauga River as presented to the Tennessee Stream Pollution Control Board. Tennessee Department of Public Health, Tennessee Stream Pollution Control Board, Nashville.
- Page, L. M. 1980. Etheostoma kennicotti (Putnam), Stripetail darter. p. 660 in D. S. Lee, et al. Atlas of North American freshwater fishes. North Carolina State Museum of Natural History, Raleigh, i-x, 854 pp.
- Page, L. M., and P. W. Smith. 1976. Variation and systematics of the stripetail darter, *Etheostoma kennicotti*. Copeia 3:532-541.
- Robins, C. R., R. M. Bailey, C. E. Bond, J. R. Brooker, E. A. Lachner, R. N. Lea, and W. B. Scott. 1980. A list of common and scientific names of fishes from the United States and Canada (fourth edition). American Fisheries Society Special Publication No. 12. Bethesda, Maryland.
- Saylor, C. F., and A. M. Brown. 1987. Evaluation of the fisheries in the Holston River upstream of John Sevier Detention Reservoir, 1986-1987. Tennessee Valley Authority, Office of Natural Resources and Economic Development, Division of Air and Water Resources, Knoxville.
- Schacher, W. 1987. Assessments of water quality, aquatic plants, benthic and fisheries communities of the Pigeon River, Cocke County, Tennessee. Tennessee Wildlife Resources Agency, Nashville.
- Schefter, P. W., and G. B. Wiggins. 1986. A systematic study of the Nearctic larvae of the *Hydropsyche morosa* group (Trichoptera: Hydropsychidae). Life Sciences Miscellaneous Publications, Royal Ontario Museum, Toronto.
- Schuster, G. A., and D. A. Etnier. 1978. A manual for the identification of the larvae of the caddisfly genera Hydropsyche Pictet and Symphitopsyche Ulmer in eastern and central North America (Trichoptera: Hydropsychidae). United States Environmental Protection Agency Report 600/4-78-060.
- Starnes, W. C., and D. A. Etnier. 1980. Fishes. *In* D. C. Eagar and R. M. Hatcher, eds. Tennessee's rare wildlife, volume I: the verterbrates. Tennessee Wildlife Resources Agency and Tennessee Department of Conservation, Nashville.
- Stubbs, J. M. 1965. Pigeon River study, Cocke County, Tennessee. Tennessee Game and Fish Commission, Nashville.

- Tennessee Valley Authority. 1973. Briceville flood relief project, environmental statement. Chattanooga.
- Tennessee Wildlife Resources Agency. 1967. Inventory of lakes, ponds, reservoirs, and streams: Anderson County. Tennessee Wildlife Resources Agency, Nashville.
- Tennessee Wildlife Resources Agency. 1986. A strategic plan for wildlife resources management: 1986-1987. Tennessee Wildlife Resources Agency, Nashville.
- Ward, C. 1960. Special report, the fishes of Nolichucky River, a contribution to a pollution survey. Tennessee Game and Fish Commission, Nashville.
- Whitworth, W. E., and R. J. Strange. 1979. Southern Appalachian brook trout survey project E-2-1, state of Tennessee. Tennessee Wildlife Resources Agency, Nashville.